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DERIVATION AND VALIDATION OF A DISSIPATION TRANSPORT  

 
EQUATION 
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Chair:  Prashanta Dutta 
 

  
In this research, a volume averaged dissipation transport equation is developed for 

particle laden turbulent flows.  The derivation process identifies an additional production 

of dissipation term that is due to the presence of particles and three new coefficients.  The 

coefficient for the production of dissipation due to the presence of particles was found 

from experimental data involving homogeneous turbulence generation by particles.  The 

coefficient for the dissipation of dissipation was found to contain an additional term due 

to the presence of particles within a homogeneous turbulent decay.  The coefficient 

associated with the production by mean velocity gradients was found analytically, but the 

data needed to determine this coefficient was lacking the necessary parameters.  A 

numerical model was developed and compared to the experimental data of particle laden 

turbulent channel flow.  The first stage of the model shows promise and agrees 

reasonably well with the experimental data. 
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CHAPTER ONE 
 

INTRODUCTION AND OBJECTIVE 
 

 

 

 

 

 

1.1 Introduction 

In a short review of the modeling status on particle laden turbulence, Eaton (2006) 

states that many models have been developed to understand turbulence modulation 

associated with dilute particle laden flows, yet there still remains a need for a general 

model that can account for factors such as particle size, relative Reynolds number, 

volume fraction, number density, mass density, surface roughness, etc.  The mechanisms 

responsible for turbulence modulation, or the effect of particles on carrier phase 

turbulence, are not well understood.  As particles are introduced, the statistics of the 

continuous phase turbulence are altered.  Depending on particle characteristics such as 

size, density, mass loading and relative velocity difference, the level of turbulent kinetic 

energy (TKE) and dissipation changes relative to the corresponding un-laden flow.  Gore 

and Crowe (1989) showed that the ratio of particle diameter to the size of the most 

energetic eddies (D/Le) can be used to distinguish augmentation and attenuation of 

turbulence intensity. The primary reason for the modulation of turbulence is attributed to 

the altered dissipation within the continuous phase caused by the work done at the 

surfaces of the particles (Eaton 2006).  The modulation of turbulence in particle laden 
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flows has been demonstrated by extensive experimentation over the last decades 

[Hosokawa, et al. (1998); Savolainen, et al. (1998); Sheen, et al. (1993); Tsuji, et al. 

(1984); Varakasin, et al. (1998), Lee and Durst (1982), Mizukami, et al. (1992), 

Parthasarathy and Faeth (1990), Chen and Faeth (2000), Lance and Bataille (1982), 

Kenning and Crowe (1997)].  However, a turbulence model that adequately predicts these 

modulations over a wide range of conditions is still lacking. 

 

1.2 Motivation and Applications 

The motivation for this work is based on understanding the fundamental physics 

behind multi-phase flows. There are several applications of this fundamental work. Chen 

and Wood (1985) note that two-phase gas-solid suspension flows are inherent in chemical 

engineering applications such as spray drying, cyclone separation, pneumatic conveying, 

pulverized coal gasification and combustion. Crowe (2000) claims that turbulence is a 

responsible for mixing of chemical species, heat transfer and shear stresses in the 

continuous phase. A short review of the modeling status was published by Curtis et al. 

(2004) in which they state that large industries such as the chemical, pharmaceutical, 

agricultural, and mining industries can benefit from an understanding of particle-laden 

turbulent flows.  Curtis et al. (2004) lists several areas of investigation that could benefit 

industry; these include turbulent-gas flow interactions, particle clustering, particle shape, 

friction effects, and particle size distribution. Other applications involve biological 

systems, atomization, and phase-change cooling or heat treatment. There is a wide range 

of applications for a multi-phase turbulence model; however there does not appear to be a 

‘general’ model that can be applied to a variety of applications. 
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1.3 Research Objective 

 The objective of this research project is to develop a volume averaged dissipation 

transport equation to extend the volume averaged equation set developed by Crowe et al. 

(1998) and Crowe and Gillandt (1998).  Such an equation set is viewed as ‘general’ and 

could potentially be applied to a wide range of applications, including homogeneous 

turbulence decay with particles, homogenous turbulence generation by particles, particle-

laden turbulent channel or pipe flow, particle laden jet flow, etc.   

 

1.4 Literature Review 

The most robust and widely used model for turbulence in single phase flows has 

been the two equation k-ε model. The equation for turbulence energy is 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

+−=
ik

T

i
k x

kvv
x

P
Dt
Dk

σ
ε

 
         (1.1) 

where k is the turbulent kinetic energy ( 2/''uuk = ), Pk is the production of turbulent 

energy due to the mean velocity gradients, vT is the time averaged turbulent viscosity, ε  

is the time averaged dissipation and σε is the effective Schmidt number for turbulent 

diffusion.  The turbulence energy is affected by diffusion, the production due to mean 

flow velocity gradients and dissipation. The equation for dissipation is  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

+−=
i

T

i x
vv

xk
C

k
PC

Dt
D ε

σ
εεε

ε
ε

ε
ε

2

21

 
   (1.2) 

where Pε is the production of dissipation due to the mean velocity gradients, Cε1 and Cε2 

are empirical constants, and σε is the turbulent Schmidt number for diffusion of 

dissipation. As with the turbulence energy, the dissipation is affected by diffusion of 

dissipation, production of dissipation and dissipation of dissipation.  
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A typical approach to obtain two-equation models for turbulence energy and 

dissipation in dispersed phase flows is to begin by adding a source term to the single-

phase momentum equation to account for the surface effects, namely 

( ) ( ) ( )ii
p

dd

j

ij

i
ij

j
i vuf

xx
Puu

x
u

t
−−

∂

∂
+

∂
∂

−=
∂
∂

+
∂
∂

τ
ρατ

ρρ
 
        (1.3) 

where ρ is the material density of the fluid, P is the pressure, τij is the shear stress, ui is 

the instantaneous carrier phase velocity, vi is the instantaneous dispersed phase velocity, 

αd and ρd are the volume fraction and material density of the dispersed phase, f is the 

drag factor, τp is the particle response time and the additional term is recognized as the 

drag force per unit volume on the continuous phase. The derivations then proceed using 

the same Reynolds averaging techniques employed for single phase flows. The concept 

of adding a point force to represent the effect of a cloud of particles is invalid, and Eq. 

(1.3) cannot be derived from fundamental principles. 

A test to assess the viability of a turbulence model for disperse phase flows is to 

apply the model to the simplest possible flow configuration. This fundamental case 

would be a uniform, steady, homogeneous flow through a cloud of particles fixed in 

position over a large region of space with no walls (shown in Figure 1.1).  For such a case 

there would be no diffusion or production due to mean velocity gradients; therefore the 

production of turbulence by the particles would be equal to the dissipation of turbulence 

within the fluid.  The remainder of this section is focused on applying previously 

developed turbulence models for particle laden turbulent flows to this fundamental case. 

Elghobashi and Abou-Arab (1983) derived a complex turbulent kinetic energy 

and dissipation equation by assuming that the particulate phase behaved as a continuous 

medium.  They applied Reynolds averaging procedures to the volume averaged equations 
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for both the continuous and disperse phases.  Their work may be appropriate for “dusty 

gas” conditions, however for flows with low particle mass loading, the assumption of 

particles behaving as a continuous medium is invalid.   

Chen and Wood (1985) followed after the work of Elghobashi and Abou-Arab 

(1983) and added a force per unit volume to the instantaneous momentum equation and 

temporal averaged the result.  They argued that their equation was valid for dilute flows 

and they proposed the dissipation transport equation for the continuous phase to be of the 

form 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎠
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 (1.4)

 

Applying the fundamental case reduces the above equation to 

ε
ρ
ρε

ε
*

2

2
2

0
tk

C p−−=
 
     (1.5)

 

This equation has two solutions for the dissipation; the first solution is the trivial solution 

( 0= )ε  while the second solution is impossible   

*2

2
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ρ
ρ

ε
ε

−=         (1.6) 

Chen and Wood also proposed the turbulent kinetic energy of the form 
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(1.7)

 

Applying the above equation to the fundamental case and solving for the dissipation 

results in 
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( )ii
c

p uu
t

′′−=
*ρ

ρ
ε            (1.8) 

which is clearly incorrect.   

Yuan and Michaleides (1992) developed an equation to represent the total 

turbulence modification by particles of the form 

( ) ( )( )22223

12
2exp1

12
vulfdfvudE w

p
pk −+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−−−=Δ ρπ

τ
τρπ     (1.9) 

The terms on the right hand side of Eq. (1.9) are the work done on the particle and the 

kinetic energy. Applying Eq. (1.9) to the fundamental case and assuming that the 

particles are large such that τp >> τ, results in 

( ) 22

12
ulfdE wk ρπ

=Δ                  (1.10) 

which predicts an increase in turbulence kinetic energy.  If τp << τ, and the particle 

diameter is on the order of the wake dimension ( f (lw)), then 

( )pk udE ρρπ
−=Δ 23

12
                  (1.11) 

which suggests that the change in kinetic energy is related to the difference in density 

between the particle and the fluid. They also claim that the model agrees well with the 

findings of Gore and Crowe (1989).   

Yarin and Hesteroni (1994) claim that the turbulence intensity is given by 

9/4
2/3

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

′
D

c

d

rel
cconst

U
u

α
α     (1.12) 

where is the relative velocity between the particle and carrier phase and αd/αc is the 

ratio of volume fractions. Their model compares well with experimental data for high 

relative Reynolds numbers but appears to be several factors off for flows with low 

relU
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relative Reynolds number (Crowe, 2001).   However, when applied to the idealized case, 

the above correlation shows an increase in turbulence intensity, yielding the correct 

results. 

Similar to the work of Chen and Wood (1985), Kulick et al. (1993), Fessler and 

Eaton (1995), and Eaton (1995) show an additional dissipation term due to the presence 

of particles of the form 

iii
p

iiii
p

iiii
p

p ucvuvucuucvuuuc ′′⎟
⎠
⎞⎜

⎝
⎛ −+⎟

⎠
⎞⎜

⎝
⎛ ′′′−′′′+⎟

⎠
⎞⎜

⎝
⎛ ′′−′′=

ρτρτρτ
ε 11

 
 (1.13)

 

where c is the particle concentration.  Applying this equation to the fundamental case 

where the mean and fluctuating particle velocity are zero and since the particles are fixed 

in position, the fluctuating particle concentration is zero, reduces the above equation to 

( )ii
p

p uuc ′′=
ρτ

ε
 
          (1.14)

 

They show from a Reynolds averaging process that the change in kinetic energy is 

comprised of the single phase effects minus the dissipation due to particles, which is 

shown to be of the form (Eaton 1995) 

p
phasesDt

Dk
Dt
Dk ε−=

−  
         (1.15)

 

Substituting in Eq. (1.14) into Eq. (1.15), applying the fundamental case to the single 

phase terms, and solving for the fluid dissipation shows 

( )ii
p

fluid uuc ′′−=
ρτ

ε
 

          (1.16) 

which is clearly incorrect. 
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 Crowe and Gillant (1998) proposed a turbulent kinetic energy equation for 

particle laden turbulent flows.  They argue that Reynolds averaging procedures do not 

apply to particle laden flow because this process does not account for the effects of 

neighboring particles.  They assert that volume averaging or ensemble averaging are the 

correct procedures to obtain the transport equations for turbulent properties within the 

carrier phase of particle laden flows.  Their turbulent kinetic energy is shown to be of the 

form 

[ ] [ ] εα
ρ
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ρ

βδδδδ
ρ

βδδαα c
j

k

j
ii

V
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V

j

i
jicc x

k
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⎝
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∂
∂

∂
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+−+−−
∂

∂
−= 2   (1.17) 

where σk is the diffusion coefficient for turbulence energy and a production and 

redistribution term due to the presence of the particle arises from the volume averaged 

process.  Applying the above equation to the fundamental case and solving for the 

dissipation results in 

[ ]2 i
cc

V u
ρα

βε =                     (1.18) 

which shows that production of turbulent energy by particles is balanced with dissipation. 

Lain et al. (1999) added an additional production term to the dissipation equation 

that accounted for the production of dissipation due to the presence of bubbles.  They 

suggested that the effect of the bubbles on the dissipation could be included by 

incorporating an additional term within the dissipation equation of the form 

PkP S
k

CS ,3,
ε

εε =
          

(1.19) 

where Sk,P represents the modulation terms found within Crowe and Gillandt’s volume 

averaged turbulence kinetic energy equation.  Including the modified form of the 
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dissipation of dissipation term, the dissipation equation provided by Lain, et al. (1999) is 

shown to be 

( ) ( ) ( )
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 (1.20) 

where U and V are the Reynolds averaged velocity components of the continuous phase, 

v is the velocity of the bubble phase, τd(CD) is the bubble response time, μT is the 

turbulent viscosity, the coefficients are identified as: Cε1 = 1.44, Cε2 = 1.92, Cε3 = 1.1, σε 

= 1.3, and Gk is the production of dissipation identified by 
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Substituting Eq. (1.21) into Eq. (1.20) and applying the fundamental case to the resultant 

equation shows 
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          (1.22) 

The above equation has two solutions for the dissipation, the trivial solution and 
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ε             (1.23) 

which shows the correct result. The coefficient Cε3 was set to be a constant of 1.1 and the 

coefficient Cε2 is the traditional value (1.92); however if this case were applied to the 

TKE equation, a comparison of the two would show that the above equation does not 

provide any new information and further requires that Cε3 = Cε2.   Squires and Eaton 
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(1992) claim that the coefficient Cε3 is not a universal constant but potentially a function 

of bulk density of the dispersed phase. 

Zhou and Chen (2001) proposed a Reynolds stress transport equation for the 

continuous phase of the form  

( ) ( ) ijijijpijijjik
k

ji GPDuuU
x

uu
t

ερρ −Π+++=
∂
∂

+
∂
∂

 
  (1.24) 

where Dij, Pij, Πij, and εij are the diffusion, production, pressure strain and dissipation rate 

terms. The term is the gas phase Reynolds stress due to particle drag force.  Zhou and 

Chen’s Reynolds stress model can be reduced to the turbulent kinetic energy model by 

setting i = j and multiplying by 1/2.  Applying the reduced equation to the fundamental 

case, the co-moving derivative, the production and the diffusion become zero.  The 

particle generation term for this case is reduced to 

ijpG

( )ii
p rp

p
iip uuG ′′−= ∑τ

ρ

 
           (1.25) 

and the pressure strain term is reduced to 

 
     (1.26) 0=Π ii

and the dissipation is reduced to 

ρεε =ii
 
     (1.27) 

(It is noted that the equation for εij in Zhou and Chen’s manuscript is not multiplied by 

the density of the fluid, thus in Eq. (1.27) a density was added to ensure the correct units). 

Substituting Eqs. (1.25 – 1.27) into the reduced form of Eq. (1.24) and solving for the 

dissipation shows 

( )ii
p rp

p uu ′′−= ∑τ
ρ

ρ
ε 1

 
        (1.28) 
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which is clearly impossible since all the terms in the right hand side of the above equation 

are positive.  Likewise, the dissipation model presented by Zhou and Chen (2001) is of 

the form 

( )[ ]
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∂′′
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D ε

ε
ρεεερ εεε 21

 
      (1.29) 

where G is not identified in the manuscript but assumed to be the standard production 

term, and Gp is source term due to the particles of the form 

( )iiii
p rp

p
p uuuvG ′′−′′= ∑τ

ρ

 
            (1.30) 

Substituting Eq. (1.30) into Eq. (1.29) and applying the resultant equation to the 

fundamental case shows 
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       (1.31) 

The above equation has two solutions for the dissipation, the trivial solution and 

( )ii
p rp

p uu
C
C ′′−= ∑τ

ρ
ρ

ε
ε

ε

2

1             (1.32) 

both of which are impossible.  Although this equation set does not show that production 

of dissipation by particles is balanced with dissipation of dissipation in the fluid for the 

fundamental case, the numerical results do compare well with the experimental data. 

 Simonin and Squires (2003) proposed a transport equation for the form of 

turbulent kinetic energy of the continuous phase for dilute particle laden flows.  Their 

equation is shown to be of the form 

vcqfc P
Dt

Dq ρεαρα −Π+Γ+=
2

 
                    (1.33) 
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where P represents the shear production, Γ represents the turbulent transport, εv is a 

combined dissipation and Πqf is described by 

[ ]idirffp
p

dd
pirir

p

dd
qf VVqqnmvvnm

..
2

,,
~2 +−+=Π

ττ  
    (1.34) 

where is the relative velocity fluctuation and  can be modeled using a gradient 

transport hypothesis, 

irv , idV .

2~
fq  is the kinetic energy of the locally undisturbed fluid velocity and  

 is related to the particle velocity fluctuation.  Substituting Eq. (1.34) into Eq. (1.33) 

and applying the resultant equation to the fundamental case results in 

fpq

[ ]2
,,

~2~~
f
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dd
ifif
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dd
v qnmuunm

−+=
ρταρτα

ε
 
         (1.35) 

where ifu ,
~ is the local and instantaneous undisturbed velocity of the fluid.  The above 

terms on the right hand side of Eq. (1.35) are equal and opposite, resulting in zero value 

for the dissipation.  It should be noted that they claim that when production is equal to 

dissipation the equation reduces to  

( )2
ii

pc

dd
v vunm ′−′=

ρτα
ε

 
        (1.36) 

which shows that the dissipation is related to the production due to the relative velocity 

fluctuations and further more would yield the correct result when applied to the 

fundamental case.  However, the terms shown in the work of Simonin and Squires (2003) 

are not clear, which may account for the discrepancy between Eq. (1.36) and Eq. (1.35). 

  The turbulent kinetic energy used by Zhang and Reese (2003) is of the form 
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where Δk is a source of turbulent kinetic energy due to the presence of particles. The term 

Δk was studied by Zhang and Reese (2001); in this study, they concluded that the volume 

averaged terms found by Crowe and Gillant (1998) better matched the experimental data 

of Tsuji et al. (1984) than the time averaged terms found in the literature. Applying the 

above equation to the fundamental case and solving for the dissipation yields 

ρα
β

ρα
ε

c

i

c

uk
2

0=
Δ

=                     (1.38) 

which shows that the dissipation is balanced with the change in production of turbulent 

kinetic energy produced by the particles.  Zhang and Reese (2003) also proposed a 

dissipation transport equation of the form 
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  (1.39) 

where Δk is a source of turbulent kinetic energy due to the presence of particles and is 

modeled after Crowe and Gillant’s generation and redistribution terms.  Applying the 

fundamental test to the above equation yields 

[ ]ρεαε
εε cCkC

k 230 −Δ=
 
                (1.40) 

Again, the above equation has two solutions for the dissipation, the first is the trivial 

solution and the second is 

ρεαεε cCkC 23 =Δ          (1.41) 

which implies that if Cε2 = Cε3, then the TKE equation is obtained and no new 

information is found, or if Cε2  does not equal Cε3, then the production of dissipation due 

to particles does not equal the dissipation of the fluid and this would be incorrect. 
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Yu, et al. (2006) formed a two-time-scale dissipation model after the work of 

Zhou and Chen (2001).  In the dissipation model, the inverse turbulent time scale of the 

fluid (ε/k) is replaced by 1/τe, where τe is the minimum of a modified particle response 

time or the turbulent time scale.  This modification does not alter the fundamental error in 

Zhou and Chen’s dissipation equation. 

 Nasr et al. (2007) added a source term to the turbulent kinetic energy and 

dissipation equations.  The source terms are similar to those proposed by Lain and 

Sommerfeld (2003) and they were modeled using a Lagrangian tracking technique. For 

steady flow conditions, their turbulent kinetic energy is of the form 
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where Rij is the Reynolds stress,  is the particle velocity and  is the drag force of the 

particle on the fluid. Applying the fundamental case to the above equation shows 
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where γ is related to the hydrodynamic drag. Nasr et al. (2007) also proposed a 

dissipation equation of the form 
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Applying the fundamental case to the above equation shows 
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Solving for the dissipation, two solutions are evident; the trivial solution and  
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which shows to be no different than Eq. (1.43) and furthermore is impossible. Nasr et al. 

(2007) compared the model results to experimental data of Kulick (1994).  Their results 

show that when particle-particle and particle-wall collisions are included, the carrier 

phase turbulence is attenuated; if these collisions are not included, the turbulence is 

augmented.  Overall, their results are in reasonable agreement with the data.  

 Yan et al. (2007), incorporating some of the ideas proposed in literature, added a 

source term to account for turbulent production due to wakes.  Their model also contains 

a sink term to account for turbulent attenuation.  The proposed model for steady turbulent 

kinetic energy is of the form 
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Applying the above equation to the fundamental case shows 
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which confirms that production by the particles is balanced with dissipation. Yan et al. 

(2007) also proposed a dissipation equation with an ad hoc source term to account for the 

dissipation production.  It is presented as 
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where C is a model constant. Applying the fundamental case to the above equation shows 
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Solving for the dissipation shows two solutions, the trivial solution and 
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The above equation does show that turbulent kinetic energy is proportional to dissipation.  

By substituting in Eq. (1.48) into Eq. (1.51) the turbulent kinetic energy is shown to be 

related to the square of the mean velocity.  Yan et al. (2007) compared several models 

[Chen and Wood (1985), Mostafa and Mongia (1988), Lightstone and Hodgson (2004), 

Yokomine and Shimizu (1995)] but all the models show to be weak in predicting the 

turbulence intensity for small particles (200 μm). However, the model of Yan et al. 

(2007) does agree well with large particle data (> 500 μm) of Tsuji et al. (1984). The 

weakness of these equations is that they contain ad hoc terms and may be limited to a 

small range of applications. 

 Mohanarangam et al. (2007) obtained an equation for the turbulent kinetic energy 

of the form 
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where ζ is the inverse Prandtl number and Pk is the production due to mean velocity 

gradients.  Applying the above equation to the fundamental case shows 
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which is incorrect.  They also proposed a dissipation of dissipation equation of the form 
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where R is a function of the rate of strain and Bε is a constant.  Applying the above 

equation to the fundamental case shows 
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which again has two solutions, the trivial solution and 
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The terms within the exponential are positive along with the terms outside; however, here 

the dissipation is shown to be negative for this fundamental case. 

 

1.5 Traditional Approach to Modeling Turbulence  

In the above literature review, many researchers either start from Eq. (1.3) or a 

volume averaged form of Eq. (1.3) and then apply Reynolds averaging procedures to 

obtain the equations describing turbulence. Other examples involve incorporating ad hoc 

source and sink terms to account for the measured effects.  However, it is apparent that 

these approaches are flawed.  To assess this flaw, let’s consider the fundamental physics.  

The momentum equations for a continuous fluid can be obtained from Newton’s 

second law by transforming from a Lagrangian to an Eulerian reference frame using the 

Reynolds transport theorem (RTT), applying Gauss’s theorem to convert the surface 

integrals to volume integrals and including the assumption of a Newtonian fluid, resulting 

in 
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for an incompressible flow. To ensure that the above equation is valid over an arbitrary 

volume the integrand is set to zero, resulting in the incompressible form of the Navier-

Stokes equations. The above equation set is valid in the continuous portion (i.e. carrier 

phase) of a particle laden flow.  However, in order to apply Eq. (1.57) to particle laden 

flows, the particle surfaces would need to be treated as boundary conditions.  Such 

treatments for each particle would require enormous computational efforts and advanced 

grid methods.   

To minimize the computational effort, many previous researchers have assumed 

that a force due to the effects of the particle can be applied to a point in the flow, such as 

( ) ( ) 0=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
∂

−
∂
∂

+
∂
∂

+
∂
∂

∫ dVFg
x
u

xx
Puu

x
u

t
V

ii
j

i

ji
ij

j
i ρμρρ

           
(1.58) 

where Fi is a force per unit volume due to the presence of particles and the integrand of 

the above equation is equivalent to Eq. (1.3).  However, this force is not defined at an 

arbitrary point within the continuous phase, see Figure 1.2.  The force due to the particle 

would better be described at a point within the continuous phase by the pressure, shear 

and body forces acting on the control volume and would require complex grids as 

described above.  The only way to include a force per unit volume is to have a control 

volume that contains enough particles to provide and effective average, also shown in 

Figure 1.2.  In order to define this force – Fi – at a point, the limiting volume would have 

to include many particles such that the inter-particle spacing would be comparable to the 

mean free path of the molecules.  This would be considered a mixture of two-fluids rather 

than a multiphase flow. 

It is shown in literature that one approach to obtain the turbulence kinetic energy 

equation is to multiply the terms within the integrand of Eq. (1.58) by the instantaneous 
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velocity and decompose the instantaneous terms within the integrand of Eq. (1.58) into 

mean and fluctuating terms (in time).  The result is then temporal averaged and the 

mechanical kinetic energy equation is subtracted, leaving an equation for the turbulent 

kinetic energy.  This approach would make sense if there were enough particles within 

the volume of interest such that the particles could be treated as a continuous medium.  

However, in many industrial applications the particles are not considered a continuous 

medium, thus limiting the application of this approach.   

The two correct approaches for developing the momentum equations and 

turbulence equations for dispersed phase turbulent flow are volume averaging (Crowe et 

al. 1998) and ensemble averaging (Zhang and Prosperetti 1994). It has been shown 

(Crowe et al. 1998) that the additional source term needed in the momentum equations 

(1.3) to account for the surface effects of particles arises from volume averaging the 

momentum equation (i.e. a volume larger than the limiting volume is necessary).  They 

also argued that it is not possible to describe the flow properties at a point without the 

inclusion of the effect of the neighboring particles (illustrated in Figure 1.2).  Volume 

averaging provides a scheme to include the effects of the dispersed phase without the 

necessity of including the details of the surface interaction.  Crowe, et al. (1998) and 

Slattery (1972) provide a detailed description of the volume average concept. 
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Stationary particles 
arbitrarily placed in a 
flow field 

Free 
stream 

velocity 

 

Figure 1.1:  An idealized case for testing turbulence models where a mean fluid flow 
approaches a bed of stationary particles within a large volume of fluid having no walls.  
For such a case, the flow is homogeneous and therefore turbulence production must 
balance with dissipation.  
 
 
 

 

 

 
 
 

 
 

 

Dispersed phase particle 
Region of interest 

Control volume 
A ‘point’ within the 
continuous phase fluid 

 
Figure 1.2:  A qualitative example of particles within a fluid.  Here it is illustrated that 
the additional force due to particle(s) – Fi – is not valid at a point within the continuous 
phase, but rather valid over a control volume that is larger than the limiting volume of the 
continuous phase and contains enough particles to obtain a stationary average. Unless the 
particle surfaces are treated as boundary conditions, a temporal averaging approach does 
not include the effect of neighboring particles at a point in the flow. 
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CHAPTER TWO 
 

A REVIEW OF VOLUME AVERAGING AND ITS RELATION TO 

TURBULENCE 

 
 
 
 
 
 
 
 

 

Although the volume averaged momentum equations have been developed 

(Crowe et al. 1998), an alternative approach to obtaining the volume averaged 

momentum equations for single phase and particle laden flows is presented. When 

considering volume averaged momentum equations, it is not obvious that these are used 

quite frequently in fluid dynamics research.   

Let’s reconsider the momentum equations derived from Newton’s second law 

( ).  Using the Reynolds transport theorem (RTT), the acceleration is transformed 

from a Lagrangian reference frame to an Eulerian reference frame.  If the forces are 

continuous, then they can be converted from a surface integral to a volume integral using 

Gauss’s theorem.  Assuming that the fluid is Newtonian and incompressible, the result is 
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(2.1) 

Traditionally, the terms are gathered on one side and collected within the volume integral 

and equated to zero. In order to ensure that the resultant equation can be applied to an 

arbitrary volume of fluid requires the integrand to be zero, yielding the well known 

incompressible Navier Stokes equations.   
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Now consider an alternative approach.  The definition of the volume average of a 

property (B) is 

dVB
V

B
V
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1

 
            (2.2) 

Multiplying Eq. (2.1) by 1/V and applying Eq. (2.2), Eq. (2.1) can be rewritten according 

to the form 
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The relationship between the volume average of a spatial gradient and the gradient of the 

volume average in a single phase fluid is 
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Also, the volume average of the time rate of change is related to the time rate of change 

of the volume average for a single phase fluid 
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Applying Eqs. (2.4) and (2.5) to Eq. (2.3) reveals 
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              (2.6) 

The above equation can also be viewed as an alternative form of the Navier-Stokes 

equations, albeit the volume averaged form.   

The rationale comes from considering a number of molecules within a limiting 

volume.  In a continuum, the volume must be large enough to obtain an average of 

molecular effects.  The properties of pressure and velocity of a single molecule do not 

make sense from a continuum point of view, but the average bulk motion of many 

22 
 



www.manaraa.com

molecules produces macroscopic properties and in order for a continuum to be defined 

these macroscopic properties must be related to the molecular properties averaged over 

the limiting volume.  Thus properties at a ‘point’ have no meaning and the form of Eq. 

(2.6) must be equivalent to the momentum equations defined at a ‘point’, Eq. (1.57), 

when the control volume is shrunk to the limiting volume of the fluid.  

 Now consider a volume larger than the limiting volume of the continuous phase 

that is laden with particles (shown in Figure 2.1).  The additional forces arising from the 

particle surfaces are now accounted for.  The volume average of a spatial gradient can be 

obtained from Leibniz rule and is shown to be (see Appendix A, Crowe et al. 1998, or 

Slattery 1972 for details) 
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                       (2.7) 

where the integration is carried out over the particle surfaces, Sd, inside the control 

volume.  In addition, the volume average of the time rate of change of a property is 

known as (see Appendix A, or Crowe et al. 1998 for additional details) 
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where  is the translational velocity of the particle (rotational effects and mass transfer 

are neglected).  The volume averaged Navier-Stokes equations (shown in Eq. (2.3)) are 

applicable to a continuous phase.  If particles are included, the volume over which the 

terms are integrated becomes the continuous phase volume (i.e. ).  Applying Eq. 

(2.7) and (2.8) to (2.3) results in a new form of the incompressible momentum equations 

that is applicable to particle laden flows, namely 

iv

∫
→ cVV
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The above equation accounts for all the forces due to particles within the continuous 

phase.  At the particle surface, it is assumed that the ‘no slip’ condition applies, then the 

velocity of the continuous phase at any point on the particle surface is the velocity of the 

particle at that point; thus Eq. (2.9) results in 
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where an additional pressure and shear term due to the particle surfaces arises. The 

remaining terms are those associated with single phase flow; in fact Eq. (2.10) reduces to 

Eq. (2.6) when no particles are present.  Evaluating the surface integrals, Eq. (2.10) 

becomes of the form 
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where the pressure and shear terms integrated over all the particle surfaces within the 

control volume yield the sum of the hydrodynamic drag force of each particle, and the 

pressure and shear contribution of the particles sum with the continuous phase pressure 

and shear terms to form the void fraction (see Crowe et al. 1998 for additional details).   

At this point, some researchers have used Reynolds averaging procedures to 

obtain the turbulent kinetic energy and dissipation equations.  However, the average 

velocities in the volume averaged equations do not represent the local (point wise) 

instantaneous velocity of a given flow and thereby are not amenable to the Reynolds 

averaging procedures used in single phase flows.  In other words, the temporal 
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fluctuations of the averaged velocities do not reflect the flow turbulence.    Aside from 

temporal averaging, another way of defining turbulence is by the velocity deviation from 

the volume averaged velocity at a point in time (Crowe and Gillandt 1998), such as 

iii uuu δ+=        (2.12) 

where ui is the instantaneous velocity or the velocity at an instance in time and a ‘point’ 

in space, <ui> is the volume averaged velocity and δui is the velocity deviation as 

illustrated in Figure 2.2.  At this point, it is worthwhile to discuss this hypothesis, since it 

has been presumed that volume averaging processes average out important turbulent 

scales within the flow (Eaton, 2006). Hinze (1975) defines turbulence flow as, “…an 

irregular condition of flow in which the various quantities show a random variation with 

time and space coordinates, so that statistically distinct average values can be 

discerned.”  To explore this concept more, consider a volume averaged property, such as 

velocity.  In order for statistically distinct average values to be discerned, N number of 

particles must be present, and for sake of simplicity tracer particles are considered.  If the 

volume fraction of the particles is low, then this would imply that a large volume would 

be needed in order to obtain an average (since a volume average is obtained at an instance 

in time).  However, the averaging volume must be large enough to maintain a stationary 

average yet small compared to system dimensions to enable the use of differential 

operators.  So consider shrinking the large volume with N tracer particles (at an instance 

in time) down to a smaller volume associated with a diameter that is on the order of the 

tracer particles within the continuous phase.  In this scenario, N number of particles is 

still needed to obtain a statistical average, so time is allowed to pass until N number of 

particles is obtained.  This scenario is representative of the non-intrusive laser Doppler 
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velocimetry (LDV) measurement system, where the volume average is analogous to the 

time average and the volume deviation is analogous to the fluctuations.   This concept is 

basically viewed as taking a long thin strip of flow frozen in time (that would provide 

statistically distinct volume average and deviation properties) and passing it through a 

measurement window at an arbitrary speed (e.g. the speed of the flow) and is similar to 

Taylor’s hypothesis or the frozen turbulence theory.  In this simple scenario, the time 

average and the volume average cannot change if more samples are taken; thus there is 

no need to “temporal average” when by shrinking the volume of a volume averaged 

process, a time average is inevitable.   

Substituting Eq. (2.12) into (2.11) reveals a volume deviation stress (analogous to 

the Reynolds stress found by Reynolds averaging procedures).  Assuming that the 

material properties of the continuous phase are constant over the volume of interest, Eq. 

(2.11) becomes 
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where αc is the volume fraction of the continuous phase, ρ is the density of the 

continuous phase, ν is the kinematic viscosity, V is the mixture volume,  f  is the drag 

factor, D is the particle diameter and n represents the particle number. The above 

equation describes the momentum of the continuous phase in particle laden turbulent 

flows, but it requires a closure model to evaluate the volume deviation stress.  

To close the equation set, the turbulent-viscosity hypothesis (Pope 2000) is 

assumed to apply.  The volume deviation stress is then modeled as 
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where vT is the turbulence viscosity defined as 

ε
ν μ

2kCT =           (2.15) 

where Cμ is a constant (0.09) and k is the volume averaged turbulent kinetic energy 

(TKE) defined as 
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and ε is the volume averaged dissipation defined as 
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Thus a transport equation for the volume averaged TKE and dissipation is needed. 

  A volume averaged TKE transport equation was derived by Crowe and Gillandt 

(1998).  The transport equation for TKE was found to be  
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Transport Pressure StrainProduction 

GenerationRedistribution Diffusion Dissipation  

where βV is the hydrodynamic drag coefficient, described as 

p

dd
V

f
τ
ραβ =        (2.19) 
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and αd is the volume fraction of the dispersed phase, ρd is the material density of the 

dispersed phase particles, and τp is the particle response time. The above equation 

describes the turbulent kinetic energy within the carrier phase of a particle-laden 

turbulent flow.  Using the same procedure as single phase flow, the pressure strain and 

transport terms are modeled as a gradient diffusion and a model of the TKE equation is 

proposed of the form 
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(2.20) 

The above equation describes the TKE within the carrier phase of a particle-laden 

turbulent flow.  It is noted that an additional generation term due to the presence of 

particles is presented along with a redistribution term.  These terms are not ad hoc but 

rather appear fundamentally through volume averaging.  

At this point, it should be noted that the turbulence length scales associated with 

multi-phase flow can be reflected through the volume deviation term.  The well known 

Kolmogorov and Taylor length scales are defined by the time averaged dissipation.  But 

this does not deny the fact that turbulent scales associated with volume averaging (i.e. 

volume deviation properties) are still present within the flow.  For example, the 

Kolmogorov length scale based on volume averaged dissipation would be defined as 
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where the volume averaged dissipation is defined by Eq. (2.17).  Likewise, other 

turbulent scales, such as time and velocity, can be defined in terms of volume averaged 

properties.   
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The advantage of using volume averaging is that the effects of the surfaces are 

easily distinguished from the effects of the fluid.  Another very important advantage in 

applying the volume average concept to dispersed phase flows is that moving meshes are 

not needed as would be in a point wise flow analysis (such as the RANS equations).  In 

the presence of millions of particles, this approach would become computationally 

expensive.  An interim solution to this complex problem is volume averaging.   

The difficulty with the application of volume averaging to multi-phase turbulence 

equations is in the comparison to experiments.  Typical experiments are set up for point 

wise measurements, however with newly developed instrumentation such as particle 

image velocimetry (PIV) there is potential to perform volume averaged measurements. 

The volume averaged momentum and turbulent kinetic energy equations are 

shown in this chapter.  However, to close the equation set, a dissipation equation is 

needed.  
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Figure 2.1:  A volume containing N number of particles such that a statistical average 
can be discerned. 
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Figure 2.2:  An illustration of the volume deviation velocity used to define turbulence in 
a volume averaged setting.  The instantaneous velocity, at any point in the flow, is the 
sum of the volume average and the volume deviation velocity at an instance in time. 
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CHAPTER THREE 
 

THE DISSIPATION TRANSPORT EQUATION 
 
 
 

 

 

 

 

 

The development of the equation for dissipation is not as straight forward as the 

turbulent kinetic energy equation. Before the volume averaged dissipation transport 

equation is described, a review of the time averaged dissipation transport equation is 

presented.   

The time averaged dissipation is defined as 
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A rate equation for dissipation is developed by taking the gradient of the momentum 

equation, multiplying it by twice the kinematic viscosity and by the gradient of the 

fluctuating velocity and then time averaging the entire equation, which is mathematically 

represented by 
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The instantaneous velocity, pressure, and shear stress are decomposed into the sum of a 

time averaged and a fluctuating property to obtain 
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where εik is the dissipation tensor.  A discussion of each of the terms is presented in 

Bernard and Wallace (2002).  They make arguments for grouping terms together and 

modeling of other terms to yield the equation for dissipation, namely 
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where Pε is the production of dissipation due to the mean velocity gradients, vT is the 

turbulent viscosity and Cε1, Cε2 are empirical constants and σε is the turbulent Schmidt 

number for diffusion of dissipation. The dissipation is affected by diffusion of 

dissipation, production of dissipation and dissipation of dissipation. 

 

3.1 Derivation by Volume Averaging 

To close the volume averaged turbulence equation set, an equation for the 

transport of dissipation is needed.  The following derivation is analogous to the derivation 

of the time average dissipation equation, provided by Bernard and Wallace (2002).  The 

definition of volume average dissipation introduced by Crowe and Gillant (1998) is 
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To begin, a spatial gradient of the Navier-Stokes equation is taken. This is multiplied by 

the volume deviation velocity gradient ( ji xu ∂∂ /δ ) and twice the kinematic viscosity.  

Finally the result is volume averaged, which is represented mathematically by 
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which can also be expressed as 
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Decomposing the instantaneous terms in Eq. (3.5) into volume average and deviation 

terms, Eq. (2.12), and assuming the flow is incompressible, the above equation can be 

rewritten as  
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The volume average of each term in Eq. (3.6) must be taken to obtain the effects of 

particle surfaces by utilizing Eqs. (2.7) and (2.8).  Applying volume averaging techniques 

to each term in Eq. (3.6) is the purpose of the next sections. 

 

3.1.1 Volume average of the first term of Eq. (3.6): 

 The definition of the volume average is applied to the first term of Eq. (3.6) 
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Assuming that the kinematic viscosity is constant over the control volume, then the above 

equation can be simplified to 
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Applying the identity shown in Eq. (2.7), the above equation can be represented as 
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By definition the volume average of the volume deviation property is zero 

      (3.10)  0=∫
cV

idVuδ

Substituting in the definition of the velocity deviation, Eq. (2.12), into the surface integral 

shows 
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The instantaneous velocity of the fluid at the surface of the particle is equal to the 

velocity of the particle and the volume averaged velocity is constant within the control 

volume (i.e. over all the surfaces of the particles within the volume of interest).  

Neglecting particle rotation and mass transfer, the above equation is reduced to 

0=−= ∫∫∫
ddd S

ji
S

ji
S

ji dSnudSnvdSnuδ         (3.12) 

The integral of the unit vector (outward normal) over the surface of the particle is zero.  

Substituting Eq. (3.12) and (3.10) into Eq. (3.9), it can be concluded that the volume 

average of the first term is zero 
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3.1.2 Volume average of the second term in Eq. (3.6): 

Assuming no mass transfer between the phases ( 0=r& ) and neglecting particle 

rotation, then the volume average of the 2nd term in Eq. (3.6) is shown to be 
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  (3.14) 

3.1.3 Volume average of the third term in Eq. (3.6): 

The volume average of the 3rd term in Eq. (3.6) is shown to be zero 
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3.1.4 Volume average of the fourth term in Eq. (3.6): 

The volume average of the 4th term in Eq. (3.6) is also shown to be zero 
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3.1.5 Volume average of the fifth term in Eq. (3.6): 

The volume average of the 5th term in Eq. (3.6) is simply 
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3.1.6 Volume average of the sixth term in Eq. (3.6): 

The volume average of the 6th term in Eq. (3.6) includes the surface effects of 

particles 
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3.1.7 Volume average of the seventh term in Eq. (3.6): 

The volume average of the 7th term in Eq. (3.6) becomes 
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3.1.8 Volume average of the eighth term in Eq. (3.6): 

The volume average of the 8th term in Eq. (3.6) is found to be 
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3.1.9 Volume average of the ninth term in Eq. (3.6): 

The volume average of the 9th term in Eq. (3.6) is simply 
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3.1.10 Volume average of the tenth term in Eq. (3.6): 

The volume average of the 10th term in Eq. (3.6) includes the effects of particle 

surfaces and assumes the form 
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  (3.22) 

The continuity equation for an incompressible flow is 
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where uk is the instantaneous velocity, defined as the velocity at an instance in time and a 

‘point’ in space.  Substituting Eq. (3.23) into Eq. (3.22) shows 
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At the surface of the dispersed phase, the instantaneous continuous phase velocity is 

equal to the dispersed phase velocity, and if the instantaneous velocity is decomposed, 

Eq. (2.12), the above equation is reduced to 

∫

∫

∂
∂

∂
∂

+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

∂
∂

∂
∂

−
∂
∂

∂
∂

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

∂
∂

∂
∂

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

∂
∂

∂
∂

=
∂∂

∂
∂
∂

d

d

S
k

j

i

j

i
k

j

i

j

i
c

k
k

S
k

j

i

j

i
k

j

i

j

i
kc

kj

i

j

i
kc

kkj

i

j

i
k

dSn
x
u

x
uu

V

x
u

x
u

x
udSn

x
u

x
uv

V

x
u

x
uu

xx
u

x
uu

xxx
u

x
uu

δδν

δδανδδν

δδδανδδανδδδν

                                    

                                    

2
2

  (3.25) 

 

3.1.11 Volume average of the eleventh (pressure) term in Eq. (3.6): 

The eleventh term in Eq. (3.6), or the pressure term, is split into two terms 
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Substituting in the deviation velocity, Eq. (2.12), and neglecting particle rotation shows 

that the first term on the RHS of the above equation is zero, thus Eq. (3.26) is reduced to 
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(3.27) 

37 
 



www.manaraa.com

Applying the product rule, the first term on the RHS of Eq. (3.27) can be represented as 
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Applying the continuity equation (Eq. 3.23) for incompressible flow to the last term in 

Eq. (3.28) results in 
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Substituting Eq. (3.29) into Eq. (3.27) leads to 
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Converting the instantaneous velocity into the sum of the volume average and deviation 

shows 
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(3.31) 

The above equation then reduces to 
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The last term on the RHS of Eq. (3.32) can be represented as 

∫∫∫ ∂
∂

∂
∂

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

∂
∂

∂
∂

−=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

∂
∂

∂
∂

−
dcc S

i
jj

i

V jj

i

iV jj

i

i
dSn

x
P

x
u

V
dV

x
P

x
u

xV
dV

x
P

x
u

xV
δδ

ρ
νδδ

ρ
νδδ

ρ
ν 222

  
(3.33) 

Substituting Eq. (3.33) into Eq. (3.32) and converting to a phase average results in 
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The first term on the right hand side remains because the volume average continuity 

equation is different than the time averaged continuity equation.  The volume averaged 

continuity equation is 
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This equation suggests that the first term on the RHS of Eq. (3.34) could be important in 

particle laden compressible flow.  In order to avoid the complications of determining a 

transport equation for the void fraction, an order of magnitude analysis is used to simplify 

the above equation.  Taking a spatial gradient of Eq. (2.12) and applying continuity for 

the instantaneous velocity in incompressible flow yields 
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Substituting Eq. (3.36) into Eq. (3.34) yields a direct comparison of the properties 
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Approximating the length scale of the spatial derivative of a volume average property as 

L and the spatial derivative of a volume deviation property as l, where L >> l shows 
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Therefore the first term on the right hand side of Eq. (3.37) can be neglected.  Thus the 

volume average of the pressure term is approximated as 
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3.1.12 Volume average of the twelfth (shear) term in Eq. (3.6): 

The shear term in Eq. (3.6) is simplified for incompressible flow 
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Decomposing the instantaneous velocity into volume average and volume deviation 

components results in 
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Applying the volume average to the first term on the right hand side of the above 

equation 
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Before applying the volume average to the second term on the right hand side of Eq. 

(3.41), it is advantageous to rearrange this term to be of the form 
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The last term in the above equation is the volume averaged dissipation of dissipation.  

Converting the last term in Eq. (3.43) to a phase volume average shows 

40 
 



www.manaraa.com

22
2

22
2 22 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂∂
∂

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂∂
∂

∂∂
∂

kj

i
c

kj

i

kj

i

xx
u

xx
u

xx
u δναδδν       (3.44) 

Volume averaging the first term on the RHS of Eq. (3.43) shows 
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Applying the volume average to the first term in Eq. (3.45) shows 
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Substituting Eq. (3.46) into Eq. (3.45) and the resultant equation with Eq. (3.44) into Eq. 

(3.43), and then substituting the resultant equation along with Eq. (3.42) into Eq. (3.41), 

and the resultant equation into Eq. (3.40) yields the volume average of the shear term as 

∫

∫

∂
∂

∂
∂

∂
∂

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂∂
∂

−

∂
∂

∂
∂

∂
∂

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

∂
∂

∂
∂

=
∂∂

∂
∂
∂

d

d

S
k

k

i

jj

i

kj

i
c

S
k

j

i

j

i

kj

i

j

i
c

kkj

ik

j

i

dSn
x
u

xx
u

Vxx
u

dSn
x
u

x
u

xVx
u

x
u

xxxx
u

δδνδ
αν

δδνδδ
αν

τδ
ν

222
2

2

2

2
2

2
2

22                             

2

  (3.47) 

 

3.1.13 Formulation of the Dissipation Transport Equation: 

Substituting Eqs. (3.13 – 3.21), Eq. (3.25), Eq. (3.39), and Eq. (3.47) into Eq. 

(3.6) results in 
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Canceling terms and rearranging reduces Eq. (3.48) of the form 
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Identifying the volume averaged dissipation tensor as 
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allows Eq. (3.49) to be rewritten in the form 
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The above equation is the general dissipation equation for two-way coupled 

particle laden flows.  The assumptions associated with Eq. (3.50) are incompressible flow 

and no mass transfer between the dispersed and continuous phase.  If the void fraction is 

unity and no dispersed phase surfaces are present Eq. (3.50) reduces to the single-phase 

flow dissipation equation 

 
Production of Dissipation 
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which is the volume average equivalent to time average dissipation equation presented by 

Bernard and Wallace (2002).  It is now apparent that the effects of the surfaces of the 

dispersed phase are associated with the following terms 
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3.2  Evaluation of the Surface Integrals: 

The integrals in Eq. (3.52) represent the dissipation effects caused by surfaces of 

the particles.  Within these integrals are spatial gradients of volume deviation properties.  

In order to evaluate the integrals, the coupled gradients must be captured.  A first attempt 
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to evaluate these terms is based on the assumption that the particles are much smaller 

than the equivalent Kolmogorov length scale and that Stokes drag is valid around the 

particles.  The relative velocity (Ui) can be expressed as the instantaneous velocity 

between the particle and the surrounding fluid as 

iii vuU −=
         

(3.53) 

which is the same as taking a particle at rest in a flow field with velocity Ui.  Substituting 

Eq. (2.12) into Eq. (3.53) shows a relationship between the local velocity deviation and 

the relative velocity in the form 

 iiii uvUu −+=δ
             

(3.54) 

The spatial velocity gradients shown in Eq. (3.52) are evaluated at the surfaces of the 

particles.  Taking a spatial gradient of the above equation shows 
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where Sd represents the surface of the dispersed phase.  If the particle is rigid and 

rotational effects are neglected, then the velocity of the particle is assumed to be constant 

along the surface of the particle.  Therefore the last two terms on the right hand side of 

Eq. (3.55) are zero when evaluated along the particle surface, reducing Eq. (3.55) to 

dd Sj

i

Sj

i

x
U

x
u

∂
∂

=
∂
∂δ

         
(3.56) 

3.2.1  Coordinate Transformation 

The relative velocity in Stokes flow is typically solved using spherical polar 

coordinates with the particle velocity set to zero.  Simplifying Eq. (3.56) for the case of 
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Stokes flow shows that the gradient of the volume deviation velocity is equal to the 

gradient of the instantaneous velocity of the continuous phase, such as 

dd Sj

i

Sj

i

x
uu ∂∂δ

x ∂
=

∂        
(3.57) 

The components of the instantaneous velocity in Stokes flow is represented in spherical

polar coordinates by 
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where a is the radius of the particle.  Converting the volume deviation velocity gradient 

from the Cartesian coordinate system to the spherical polar coordinate system yields 

⎟
⎟
⎟
⎟

⎜

⎜
⎜

⎝

∂

∂
∂

∂
∂

∂∂
+−

∂
=

∂

ϕθϕθ

θθθ
1

sin
1

sin
1 uuuuu

rr
uu

r

rrrrrx j   
(3.59) ⎟

⎟
⎟

⎠

⎞

⎜

⎜
⎜
⎜
⎛

++
∂

−−

∂∂∂
∂

∂

∂
∂

∂
∂

∂

θ
ϕθ

θ

δ

θϕϕθϕ

ϕθθ

ϕθ

cot
sin

cot

111

rrrr

uuuuu
r

u
r

u
r

u

u

rr

rr

r

i

In Stokes flow, the velocity in the ϕ direction is zero.  Thus for the case of Stokes flow, 

the above equation is further reduced to 

ConditionStokes
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At the particle surface, the velocities in the rad

r
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ial and tangential directions are both zero.  

Evaluating the above equation at the particle surface leaves only the velocity gradients in 

the radial and tangential directions of the form 
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The square of the volume deviation velocity gradient evaluated at the surface is 
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Taking spatial gradients of the Stokes velocity and evaluating them at the surface of the 

particle shows that there is only one contributing spatial gradient 
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so the deviation velocity gradient squared is then represented by 

(3.63) 
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The unit vector within the surface als of Eq. (3.52) is the

ector 

is related to the radial component 

integr  unit vector 

outward normal to the surface.  Assuming the particles are spherical, then the unit v

rk en =

                      

∑∫ =BdS

(3.65) 

The integral over the surface area of the particles within the domain is expressed as 

                
(3.66) ∫∫

nS

ddrB
d

ππ

ϕθθ
2

0 0

2 sin
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where n is the number of particles within the domain.  This expression integrates the 

ows for the effects of different 

particle

3.2.2  Diffusion of Dissipation at the Particle Surface 

ve on 

the outside of the integral is left in Cartesian coordinates.  The gradients of the deviation 

velocity are transformed into spherical polar coordinates and evaluate e su

The unit normal vector in Cartesian coordinates is 

sults in 

effects of a single particle but through the summation all

 diameters, friction factors, etc.  

 By transforming the gradients and unit normal vectors between Cartesian and 

spherical polar coordinate systems, the terms in Eq. (3.52) can be obtained directly. 

 

To evaluate the diffusion of dissipation at the particle surface, the derivati

d at th rface.  

kjien rk
ˆcosˆsinsinˆcossin θϕθϕθ ++==     (3.67) 

Substituting Eqs. (3.64), (3.66) and (3.67) into the first term in Eq. (3.52) re
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  (3.68) 

At the surface, r = a, the free-stream velocity (U) is constant and independent of the 

position along the particle surface, thus the above equation is simplified to 
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  (3.69) 

ro.  Although this is the case for the 

assump se if the particle is larger than the 

Each term within the brackets integrates to ze

tion of Stokes flow, this may not be the ca
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Kolmogorov length scale and in the presence of mean elo ra ients t at wou

the particle to rotate. 

d term in Eq. (3.52) is shown to be 

 v city g d h ld cause 

 

3.2.3  Pressure Strain at the Particle Surface 

The secon

∫ ∂
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∂
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i

jj
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δδ

ρ
ν2        

Evaluation of the second term in Eq. (3.52) begins with defining the volume deviation 

pressure within a Stokes drag regime.  In Stokes flow, the instantaneous pressure is given 

by (White 1974) 

θμ cos
2

3
2r

aUPP o −=                     (3.71) 

where Po is the uniform free-stream pressure.  Decomposing the instantaneous pressure 

into a volume average and a volume deviation pressure and comparing it to Stokes 

pressure shows that the deviation pressure is represented by 

θμδ cos3
2

aUP −=                    (3
2r

.72) 

The spatial gradient of the deviation pressure is converted from art n toC esia  spherical 

polar coordinates 

ϕ
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rrrx j sin

The gradients of the deviation pressure are found by taking derivatives of Eq. (3.72) 

0   and   ,sin
2

3     ,cos3
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∂
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δ μ δ μ δθθ
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P
r
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r
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r
P

Since both the 

deviation velocity gradient and the deviation pressure gradient are converted to spherical 

             (3.74) 

In order to couple the correct terms, the unit normal vector is evaluated.  
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polar coordinates, the unit vector is also converted.  The unit vector is the unit normal 

vector, thus it is required that 

     (3.75) ri enn == 1

Substituting Eqs. (3.63), (3.66), (3.74) and (3.75) into Eq. (3.70) results in 
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where ur an

22 sinsin                    

d uθ are the radial and tangential components of the instantaneous velocity 

and δP is the deviation of the volume pressure or Stokes pressure.  Evalua

velocity gradients in Eq. (3.76) at the surface of the particle shows that they are zero.  

tion of the 

Thus the pressure strain at the surface of the particle is shown to be zero for Stokes 

conditions 
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i
jj xxVρ

∂∂
∫ i dSnPu δδν            (3.77) 

Again, this is based on the assumption of Stokes flow and may not be the case for 

particles larger than the Kolmogorov length scale. 

 

2) is 

3.2.4  Production of Dissipation at the Particle Surface 

The last term in Eq. (3.5
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The terms within the integral represent a scalar, thus the gradient is represented in 

spherical polar coordinates as 
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The unit vector is the unit normal vector and is represented in sph ric are al pol  coordinates 

by 

rk enn == 1         (3.80) 

Then Eq. (3.78) is reduced to 
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The square of the velocity deviation gradient is found in Eq. (3.64).  Evaluating the terms 

n-zero gradient is ru ∂∂ θat the surface shows that the only no .  Taking a spatial gradient 

of Eq. (3.64) with respect to the radius results in 
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where U is the free stream velocity in Stokes flow.  Substituting Eq. (3.6
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6) and Eq. (3.83) 

into Eq. (3.81) shows 
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Evaluating at the surface by setting r = a and noting that the free-stream velocity (U) is 
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t over the particle surface, Eq. (3.84) is simplified to 
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where the summation represents the effects of the all the particles within the control 

volume and n represents each particle within the control volume.  Evaluating the integral 

yields 
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Thus the last ter

=⎥⎢− k dSn 72π         (3.86) 

m in Eq. (3.52) can be identified as a production of dissipation term.  The 

deviation from Stokes drag may be approximated by multiplying by the drag factor, f, 

which is the ratio of the drag coefficient for a sphere to Stokes drag. In order to apply this 

gorov length scale, it is assumed that 

the coe

equation to particles that are larger than the Kolmo

fficient 72π can be replaced by an empirical coefficient so Eq. (3.86) can be 

represented by 
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where Cε3 would be determined by experiments.    

To summarize, the terms in Eq. (3.52) were analyzed by assuming that the 

particles were much smaller than the Kolmogorov length scale of the flow.  This 

assumption allowed the terms in Eq. (3.52) to be evaluated analytically. However, this 

assumption does not apply to turbulent particle laden flows where the wake effect is 

important.  Thus once the form of the terms within Eq. (3.52) was found, it was then 

assumed that a coefficient could be applied along with the drag facto

⎥⎢ nk 3ε

r to account for the 

ake effects in turbulent flows.  The coefficient can be calibrated for homogeneous 

le ussed further in Chapter 4). Although the 

w

turbu nce generation by particles (disc
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assump

 scale could be argued, this assumption 

resulted in a simple term that can be easily calibrated and modeled.   

 

3.3 The Modified Dissipation Model 

Evaluating the surface integrals using Stokes flow, the volume averaged 

tion of  Stokes flow to analyze the terms within Eq. (3.52) by assuming that the 

particles are smaller than the Kolmogorov length

dissipation transport equation assumes the form 
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The above equation is difficult to model directly, thus a simple model is proposed

similar arguments for the development of the time averaged dissipation model, i.e. 

Pope 2000) the terms representing the production of dissipation (characterized by mean 

velocity gradients) can be represented by 
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 using 

obtaining Eq. (3.3) from Eq. (3.2).  Using these techniques (Bernard and Wallace 2002, 
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where Pε is modeled as 
j

i
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i
T x

u
x
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∂
∂
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υ and Cʹε1 is not necessarily equal to 1.44 but rath

  The 

terms representing the diffusion of dissipation (characterized by the spatial gradie

be represented by 

er a 

combination of single and dispersed phase effects (discussed further in Chapter 6).

nts) can 
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The terms representing dissipation of dissipation can be modeled as 
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where Cʹε2 is not necessarily equal to 1.92 (the coefficient for the dissipation of 

dissipation in the tim

r in Chapter 5). The effects of the particle 

surfaces constitute a production of dissipation term and can be modeled as 

e averaged dissipation model) but rather a combination of single and 

dispersed phase effects (discussed furthe
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Substituting Eqs. (3.89 – 3.92) into Eq. (3.88) yields a model for the volume 

averaged dissipation transport in the form 
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2

    

where αc is the void fraction, Pε is the production of dissipation, Cʹε1 and Cʹε2  are the 

combined single and dispersed phase production and dissipation of dissipation 

coefficients respectively, Cε3 is the production of dissipation coefficient (due to particles), 

V is the mixture volume, ν is the kinematic viscosity,  f  is the drag factor, ui and vi  are 

the instantaneous fluid and particle velocities respectively, D is the particle diameter, n is 

the particle number within the mixture volume, νT is the turbulent viscosity, σε is the 

effective Schmidt number for turbulent diffusion, and k and ε are the volume averaged 

turbulent kinetic energy and dissipation defined in Eqs

Applying Eq. (3.93) to the fundamental case of particle laden turbulent flows described 

. (2.16) and (2.17) respectively.  
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above where the particles are stationary and the flow is steady and homogeneous (with no 

wall effects) reduces to 

kD
u

V
v

n n

ni
222 ε

     

which shows that the production of dissipation due to the presence of particles must 

balance the dissipation of dissipation of the fluid.   

According to the experimental data reviewed by of Gore and Crowe (1989), the 

turbulence intensity for particle-laden flows is increased (relative to a single phase flow) 

for D/L > 0.1 and decreased for D/L < 0.1, where D is the particle diameter and L is the 

characteristic length  of

CfC cn 23 αεε ′=∑ (3.94) 

 the most energetic eddy.  Although the magnitude of the ratio of 

particle diameter to the fluid length scale at which this transition occurs is arguable 

(Eaton 2006), clearly there is a transition.  Non-dimensionalizing Eq. (3.94) by a mean 

velocity (U) and a characteristic length scale in the flow (L), a measure of the most 

energetic eddy, shows 

( ) k
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n n
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f
V

C cn ~
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/~Re 223 αεε ′=∑
  

(3.95) 

ber based on the 

ean velocity and a characteristic length scale of the flow, a measure of the most 

energetic eddy.  The ratio D/L appears as a fundamental parameter.  For this idealized 

case, it can be shown that the turbulence intensity (

~11 22
ε

   

where the tilde is the non-dimensional form and ReL is the Reynolds num

m

k
~

2=σ ) is a function of D/L which 

corresponds to the findings of Gore and Crowe (1989).  
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CHAPTER FOUR 

THE PRODUCTION OF DISSIPATION COEFFICIENT DUE TO THE 

PRESENCE OF PARTICLES 

 

 

 

 

 

 
In the dissipation model, Eq. (3.93), a production of dissipation term due to the 

presence of particles was obtained.  This term was modeled using Stokes analysis.  

However, the wake effect must be accounted for, so the coefficient must be determined 

from experimental data involving the production of homogeneous turbulence by particles. 

 

4.1 Determining the Particle Production of Dissipation Coefficient (Cε3) 

Since the fundamental case cannot be obtained experimentally, the next most 

basic flow configuration is dropping particles into an initially quiescent fluid, i.e. 

homogeneous turbulence generation by particles.  There are several data sets associated 

with this type of experiment.   

The volume averaged turbulent kinetic energy equation developed by Crowe and 

Gillandt (1998) reduces to 

22
i

pc

dd
i

c

V vfv
τρα

ρα
ρα

β
ε ==           (4.1) 

for 1<<ivk .  Simplifying Eq. (3.93) for the case of falling particles through an 

initially quiescent fluid results in 
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(4.2) 

The left hand side of the above equation represents the production of dissipation rate due 

to the relative velocity gradients at the particle surface while the right hand side is the 

dissipation of dissipation rate of the viscous fluid.  For the case of particles, of the same 

diameter, uniformly falling in an initially quiescent fluid, Eq. (4.2) reduces to 
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(4.3) 

There is in-sufficient information at this point to evaluate both empirical 

coefficients.  The value of Cʹε2 for the standard single phase k-ε model is 1.92.  However, 

it is assumed that this coefficient contains a contribution due to the presence of particles.   

For this reason, the ratio of coefficients will be evaluated.  By substituting Eq. (4.1) into 

Eq. (4.3) a relationship between the coefficients associated with the production of 

dissipation due to presence of particles and the dissipation of dissipation within the fluid 

is obtained 
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(4.4) 

Crowe and Wang (2000) compiled data from several different authors and showed 

a correlation between the relative Reynolds number and the ratio of Taylor length scale to 

particle diameter.   Most of the data fit remarkably well, however a few sets of data 

seemed to deviate.  Crowe and Wang (2000) report that the data of Kenning and Crowe 

(1997) may be low compared to the rest of the data due to analyzing the turbulence after 

the particle cloud passed.  There does not seem to be enough data with varying volume 
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fractions that confirm this conclusion.  The volume fractions associated with Kenning 

and Crowe’s data are on the order of 10-2, and those associated with the data of Mizukami 

et al. (1992) and Parthasarathy et al. (1990) are on the order of 10-6 and 10-4 respectively.   

The volume fractions of Lance and Bataille (1982) were on the order of Kenning and 

Crowe’s data.  According to Elghobashi (1994), volume fractions less than 10-6 have 

negligible effect on the turbulence of the carrier phase (one-way coupling), volume 

fractions in the range of 10-6–10-3 alter the turbulence of the carrier phase (two-way 

coupling), and volume fractions greater than 10-3 further alter the turbulence of the carrier 

phase due to particle-particle collisions (four way coupling).  The data of Kenning and 

Crowe (1997) and Lance and Bataille (1982) showed volume fractions on the order of  

10-2; which appears to fall into a four-way coupling category.   

The correlation presented by Crowe and Wang (2000) for two-way coupling is 

2/1

218
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αλ             (4.5) 

where, λ is the Taylor length scale, D is the particle diameter, αc and αd are the volume 

fractions of the continuous and dispersed phase respectively, k is the turbulent kinetic 

energy of the carrier phase, f is the drag factor, and Δu is the velocity difference between 

the phases.  Comparing equations (4.4) and (4.5), it is clearly noted that the ratio of the 

particle production of dissipation coefficient to the total dissipation of dissipation 

coefficient is proportional to the square of the ratio of the particle diameter to the Taylor 

length scale of the fluid 
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(4.6) 
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In order to evaluate the ratio of coefficients, data from experiments of particles 

falling in an initially quiescent fluid with volume fractions between 10-6 and 10-2 were 

considered along with useful data at the centerline of pipe flow experiments.  The data of 

Parthasarathy et al. (1990), Mizukami, et al. (1992), Hosokawa, et al. (1998), Varaksin et 

al. (1998), and Chen, et al. (2000) provided enough information to determine the 

coefficient over a wide range of relative Reynolds numbers (1 – 1000), volume fractions 

(10-6 – 10-2), particle density (900 – 3600 kg/m3), carrier phase density (1 – 1000kg/m3).  

Mizukami et al. (1992) and Parthasarathy et al. (1990) performed experiments to 

determine the production of dissipation due to particles falling in an initially quiescent 

fluid, representing the conditions for Eqs. (4.1) and (4.2).  In their data, the particle 

diameters exhibited minimal deviations and particle velocities were nearly uniform.  The 

data of Hosokawa et al. (1998), Varaksin et al. (1998) and Chen et al. (2000) involved 

particles in pipe flow, of which only the data at the centerline of the pipe was taken.   

These data sets were chosen due to the necessary information needed to compute the ratio 

of coefficients over a wide range of relative Reynolds numbers (shown in Figure 4.1) 

within an environment containing homogeneous turbulence generation by particles.  The 

data reduced for the ratio of coefficients as a function of relative Reynolds number, 

defined as 

c

ii
r

Dvu
ν
−

=Re          (4.7) 

are shown in Figure 4.1.  The data do appear to correlate well for relative Reynolds 

numbers ranging from 100 - 1000.  The data of Mizukami et al. (1992) and Parthasarathy 

et al. (1990) involve high particle Reynolds numbers over a wide range of particle mass 

loadings; at high particle Reynolds numbers, the correlation does not appear to be 
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affected by the particle mass loading.  However, at low relative Reynolds numbers, the 

data of Varaksin et al. (1998) shows that the particle mass loading (0.12 – 0.39) must 

contribute to the coefficient. The fact that there is a correlation lends credence to the 

model, yet more data is needed at low relative Reynolds numbers to understand the effect 

of particle mass loading. 

Fitting the data shown in Figure 4.1 using the least squares method with the 

equation 

( )m
rpC

C
C Re

2

3
ε

ε

ε ≈
′

        (4.8) 

where Cεp is the fit coefficient equal to 0.058, and m is the exponent found to be 1.416.  

Substituting Eq. (4.8) into Eq. (3.93) results in a general dissipation transport equation for 

incompressible flow with no mass transfer between the phases of the form 
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where Vd is the total volume of the dispersed phase particles within the mixture volume.  

For steady state dispersed phase systems with no diffusion or mean carrier phase velocity 

gradients, Eq. (4.9) reduces to 
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(4.10) 

A comparison of the model prediction of the dissipation found from experimental 

data is shown in Figure 4.2.  The data of Hosokawa and Varaksin did not include results 

for the dissipation. 
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Figure 4.1:  Variation of the ratio of the production of dissipation coefficient (Cε3) to the 
dissipation of dissipation coefficient (Cʹε2) over a wide range of relative Reynolds 
numbers for various types of particle laden flows.  For low relative Reynolds numbers, 
the data of Varaksin et al. (1998) shows that the ratio of coefficients depends on the 
particle mass loading – for increased loading, the ratio of coefficients is increased.  
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Figure 4.2:  Comparison of the dissipation predicted by the model to the experimental 
data of Parthasarathy et al. (1990), Mizukami et al. (1992), and Chen et al. (2000). 
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CHAPTER FIVE 

THE DISSIPATION OF DISSIPATION COEFFICIENT 
 
 
 
 
 
 
 
 
 
 
 

 

In the recent decade, direct numerical solution has been used to study the effects 

of particles on the modulation of turbulence within the carrier phase.  Squires and Eaton 

(1990) simulated a large number of particles using direct numerical simulation.  The 

turbulence was forced at low wave numbers and the governing equations were solved 

using pseudo-spectral methods.  The Reynolds number was ~37 and the solution was 

shown to be grid independent by increasing the number of grid points from 323 to 643.   

The particles were modeled as point forces using the particle-source-in-cell (PSIC) 

method.  To account for interactions between cells, the overall force was interpolated 

back to the surrounding eight grid points using volume-weighted averaging.  Their results 

showed that the presence of particles (for a mass loading from 0 – 1) tend to decrease the 

turbulent kinetic energy and dissipation relative to un-laden flows.  If the response time 

of the particle is increased, the dissipation and turbulent kinetic energy is further reduced.  

Ferrante and Elghobashi (2003) also used DNS techniques to study the effect of a large 

number of particles in the flow.  They used second order finite differencing rather than 

pseudo-spectral methods on a 2563 grid and tracked upwards of 8·107 particles.   
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The results of the work of Ferrante and Elghobashi show decreased kinetic energy 

with certain particle properties, but they also show increased kinetic energy and no 

change in kinetic energy all relative to un-laden flow.  In other words, there appears to be 

combined particle and fluid properties that would produce dissipation, destroy dissipation 

or yield no net dissipation such that the particle-laden flow behaves as though it did not 

have any particles.  The particles that produced no net change in turbulent kinetic energy 

relative to an un-laden flow were referred to as “ghost particles”.  The parameter used by 

Ferrante and Elghobashi to distinguish between these three regimes is the ratio of the 

particle response time to the Kolmogorov time scale (τp / τk).   

Burton and Eaton (2005) used an overset grid technique to directly resolve the 

flow around a single particle in a turbulent field.  Their simulations focused on a 

Reynolds number around 30 with a 1923 and 3843 grid.  By comparing laden simulations 

to un-laden, they found that within 1.5 particle diameters from the surface the dissipation 

was enhanced and beyond 5 particle diameters the level of turbulence was not affected. 

They concluded that the drag force was the dominate force of all the forces acting on the 

particle.  They also determined that the volume fraction and the formation of the 

boundary layer on the particle appeared to modify the turbulence in a local region.   

 Schreck and Kleis (1993) studied how particles modify grid-generated turbulence.  

They uniformly dispersed glass and plastic particles ranging in diameter from 0.6 mm to 

0.71 mm into a stream of water.  Their results show that the presence of particles 

attenuated the carrier phase turbulent kinetic energy.  The attenuation was more 

pronounced at higher particle volume concentrations and larger particle densities.  The 

particle volume concentrations varied from 0.4% to 1.5%.  Geiss et al. (2001, 2004) also 
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studied the modulation of carrier phase turbulent kinetic energy by particles.  The 

particles were glass having a nominal diameter of 110 - 480 μm.  The experimental setup 

of Geiss et al. (2001) was a modified version of the setup used by Kulick et al. (1993). 

They report attenuation of turbulent kinetic energy with particles in the axial flow 

direction. 

The dissipation of dissipation coefficient is typically calibrated for homogeneous, 

isotropic turbulence decay. This involves data from flow behind a grid or direct 

numerical simulation (DNS).   The dissipation of dissipation coefficient for particle laden 

flows is assumed to be of the form 

  pCCC 222 εεε +=′
            

(5.1) 

where Cε2 is the single phase coefficient (1.92) and Cε2p is the contribution of the 

particles to the dissipation of dissipation.  It is a requirement that Cε2p goes to zero as the 

flow transitions to single phase, thus Cε2p must be a function of one or more of the four 

fundamental non-dimensional variables found in particle laden flows 

),,Re(Re,2 StCfC rp =ε
                   

(5.2) 

where Re is the Reynolds number of the fluid, Rer is the relative Reynolds number, C is 

the particle mass concentration and St is the Stokes number. The experimental data 

needed to calibrate the dissipation of dissipation coefficient ( 2εC ′ ) are insufficient; 

however, direct numerical simulations (DNS) can be used to find the particle contribution 

to the dissipation of dissipation coefficient. 

The current research differs from previous studies by modeling the decay of 

homogeneous turbulence in a field of stationary particles.  The rationale for the use of 

stationary particles is to minimize the production of dissipation by particles by assuming 
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that the particles are traveling at the same speed as the decaying fluid.  A comparison 

between DNS simulations with no particles (i.e. single phase) and with stationary 

particles applied at discrete grid points is used to understand the effect of the particles on 

the dissipation of dissipation coefficient. The purpose of this study is to determine how 

the presence of particles alters the dissipation of dissipation coefficient  in the 

volume averaged k-ε model.   

( 2εC ′ )

 
5.1 Governing Equations for DNS 

A spectral based code was used to simulate all the length scales of an isotropic 

homogeneous turbulent decay.  The benefit is that no closure model is needed as the 

length and time scales within the flow are directly resolved.   Orzag and Patterson (1972) 

and Rogallo (1981) developed and used this method to study isotropic, homogeneous 

turbulence. 

In a DNS environment, the Navier-Stokes equations are non-dimesionalized and 

solved for in Fourier space due to the accuracy in determining the spatial gradients.  The 

physical velocity is expressed using a Fourier series of the form 
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(5.3) 

and the orthogonality condition is applied to solve for the velocity coefficients.  Within 

the Fourier domain, a point force is applied at distinct grid points to simulate a stationary 

particle.  For incompressible flow, the non-dimensional Navier-Stokes equations with a 

point force due to stationary particles are shown to be 
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where the equation was non-dimensionalized by the mean fluid velocity (U) and the 

domain length scale (L).  The tilde represents the non-dimensional form of each term, 

where t~ is the non-dimensional time,  D~  is the non-dimensional particle diameter, V~Δ  is 

the non-dimensional volume of the computational cell, f is the drag factor, and ReL is the 

Reynolds number.  The energy spectrum used to initialize the domain was the form 
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=

ck
ckkE λ                         (5.5) 

where λ and c are constants and k is the wavenumber (McMurtry, 1987, de Bruyn Kops 

et al. 1989). To ensure that the smallest scales are being modeled, the grid was set to be 

smaller than the Kolmogorov length scale (ηkmax > 1).  To avoid aliasing effects, the 2/3 

rule was applied to determine the maximum wave number based on the number of grid 

points chosen and spherical truncation was applied to the domain.  All spatial derivatives 

were computed using pseudo-spectral methods.  The length of the domain was set at 2π 

and the boundary conditions were periodic.  The time stepping routine was a second 

order Adam-Bashforth algorithm.  Additional details on the development of the code can 

be found in McMurtry, 1987.   

 The non-dimensional Navier Stokes equation (5.4) can be represented in Fourier 

space as 
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where iû~  are the non-dimensional Fourier velocity coefficients, N is the number of 

particles,  is the Kronecker delta,  is the permutation tensor, ijδ jklε lω~  is the non-

dimensional vorticity and ik  is wavnumber vector in the Fourier domain.  From the above 
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equation, it is clear that the presence of particles appear to behave as an increase in non-

dimensional viscosity.  Thus the non-dimensional force due to particles can be solved in 

Fourier space rather than physical space and the above equation takes the form 
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5.2 Validating the single phase DNS Results 

To validate the code, the non-dimensional viscosity was set to 0.08 (ReL = 12.5) 

and the results of a 643 domain were compared to 1283 (shown in Figure 5.1).  In 

addition, the decay rate predicted by the DNS model was compared to the decay power 

law [k/ko = (t/to)-n] (Pope, 2000).  For the case of ReL = 12.5 and an exponent of n = 1.56, 

the slope of the decay model closely matches the slope of the DNS results (Figure 5.1).  

The literature shows values for decay exponent in the range of 1.15 < n < 1.45 (Pope, 

2000).   

  

5.3 Non-dimensionalization of the Dissipation Equation 

To determine the effect of particles on the dissipation of dissipation coefficient, 

stationary particles are placed at various grid points within a DNS domain.  The flow is 

isotropic and homogeneous with stationary forces representing the particles at each grid 

point within the flow.  For this case, the dissipation rate model, Eq. (3.93), reduces to the 

form 
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Defining the non-dimensional terms in the dissipation equation 
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Substituting Eq. (5.9) into Eq. (5.8), the dissipation rate equation can be represented in 

non-dimensional form as 
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The above equation is then reduced to 
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Assuming that a particle is placed at every grid point within the DNS domain and that the 

particle diameter is the same, the non-dimensional velocity deviations can be represented 

by the non-dimensional turbulent kinetic energy ( k
~
), and Eq. (5.11) can be further 

reduced to 
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where Np represents the number of particles (or grid points for a single particle placed at 

every grid point).  Substituting Eq. (4.8) for Cε3 into Eq. (5.12) shows 
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where Cεp = 0.058 and m = 1.416. 

 

5.4 Method for Determining the Dissipation of Dissipation Coefficient (Cʹε2) 

 From the DNS results, the volume averaged dissipation and kinetic energy are 

computed for each time step.  The time rate of change of dissipation is computed using a 

central differencing scheme.  The terms in brackets on the right hand side (RHS) of Eq. 

(5.13) are easily computed and compared to the non-dimensional time rate of change of 

dissipation.  The coefficient is adjusted such that the square of the difference between 

both sides of the equation is minimized.  This is defined as 
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where Nt is the number of time steps over which the equation is applied.   

The dissipation of dissipation coefficient for particle laden flows is shown in Eq. 

(5.1).  It is a requirement that Cε2p approaches zero as the flow transitions to single phase. 

Therefore Cε2p must be a function of one or more of the four fundamental non-

dimensional parameters related to the particulate phase (shown in Eq. (5.2)).  An analysis 

of Eq. (5.4) shows that the non-dimensional form of the coefficient for the force due to 

the presence of particles is related to the ratio of particle concentration to the Stokes 

number (C/St) – where the Stokes number is defined as the ratio of the particle response 

time to the fluid time scale (defined in terms of the free stream velocity and a length scale 

based on the size of the domain).  Therefore, it is proposed that the dissipation of 

dissipation coefficient due to the presence of particles, within Eq. (5.1), can be modeled 

as a function of 
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A comparison between DNS simulations with and without stationary particles is used to 

assess the effect of the particles on the overall dissipation of dissipation coefficient. 

 The effect of particle loading is shown in Figures 5.2(a) and 5.2(b).  As the ratio 

of concentration over Stokes number is increased, the particles rapidly attenuate the 

turbulent kinetic energy (Figure 5.2(a)) and dissipation (Figure 5.2(b)).  The notion of 

decreased turbulent kinetic energy for increased loading is in agreement with the DNS 

work of Squires and Eaton (1990) and also the experimental work of Schreck and Kleis 

(1993). The trends for dissipation show that the slope is becoming more negative as the 

concentration is increased; from Eq. (5.13) it can be seen that the additional production of 

dissipation term (due to particles) does not account for this case. Therefore, the 

dissipation of dissipation must balance with the production of dissipation due to particles 

and the time rate of change of dissipation due to turbulent decay. Based on the trends, it 

is hypothesized that the particle contribution to the dissipation of dissipation coefficient 

can be modeled of the form described in Eq. (5.15).   

In order to validate this hypothesis, two different Reynolds numbers were used, 

ReL = 12.5 and 3.3.  The Reynolds number of 12.5 is close to the turbulent decay region 

found in literature (n = 1.56) and the Reynolds number of 3.3 is close to the final decay 

region (n = 2.5).  An iterative method was used to determine the dissipation of dissipation 

coefficient .  The time rate of change of dissipation in Eq. (5.14) was computed from 

DNS results for dissipation using a central difference scheme.  The comparison was 

based on the range of Taylor scale Reynolds numbers (~4.5 – 0.01) that agreed with the 

results from the power decay law.   The DNS results for k and ε were substituted into Eq. 

2εC ′
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(5.14) and  was iterated until Eq. (5.14) was minimized.  It was found that the 

additional production of dissipation term was negligible due to the low relative Reynolds 

number.  Based on the results, it is clearly seen that the slopes are captured for each C/St 

(ranging from 1 – 10) by merely increasing the coefficient – 

2εC ′

2εC ′ , shown in Figures 

5.3(a) and 5.3(b).  

  With this method, the contribution to the coefficient of dissipation of dissipation 

due to the presence of particles can be isolated.  The dissipation coefficient for the single 

phase (Cε2) was determined from the DNS results with no particles. The effect of Cε2p is 

determined from Eq. (5.1) and plotted against the ratio of concentration to Stokes 

number, as proposed in Eq. (5.15) and shown in Figure 5.4.  The results show that the 

effect of the particles on the dissipation of dissipation coefficient ( )pC 2ε  correlated well to 

the ratio of the particle concentration to the Stokes number. From the data, it is clear that 

for particle laden flows involving low concentrations and high Stokes numbers, the effect 

of the particles on the dissipation of dissipation term is negligible, thus the single phase 

coefficient is adequate.  However, for particle laden flows involving high concentrations 

and low Stokes numbers (e.g. dusty gas conditions) the presence of particles can have a 

significant effect on the dissipation of dissipation term when compared to single phase.   

The above results were fit using the least squares method.  The fit is found to be of the 

form 

m

p St
CC ⎟

⎠
⎞

⎜
⎝
⎛= ξε 2

              
(5.16) 

where ξ is 0.362 and m is 0.76.  It can also be seen that the effects of the fluid Reynolds 

number may not be important at the lower C/St values, however this may not be the case 
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at higher C/St. The results, plotted as a function of Re⋅
St
C , are shown in Figure 5.5 and 

seem to collapse rather nicely.  The values were fit using a least squares method and 

found to be of the form 

83.0

2 Re062.0 ⎟
⎠
⎞

⎜
⎝
⎛=

St
CC pε

                 
(5.17) 
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Figure 5.1: Comparison of DNS results with the power decay model (Pope, 2000) for n = 
1.56 over the non-dimensional time ( t͂ ) for ReL = 12.5: the power decay model is offset 
intentionally for clarity. 
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(a) 

 

 
(b) 

Figure 5.2:  DNS comparison of various particle loadings over the non-dimensional time 
( t͂ ) for ReL = 12.5: (a) effect of particle loading on normalized TKE, (b) effect of particle 
loading on normalized dissipation (the TKE and dissipation are normalized by the initial 
value). 
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(a) 

 
(b) 

Figure 5.3: Comparison of the dissipation with Cʹε2 to the DNS results over the non-
dimensional time ( t͂ ): (a) ReL = 12.5, (b) ReL = 3.3.  These results show that by 
increasing Cʹε2 with C/St, the trends can be modeled accurately. 
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Figure 5.4:  The contribution of particles to the dissipation of dissipation coefficient 
(Cε2p) correlated with the particle concentration over the Stokes number (C/St). The 
legend shows the number of grid points in each direction along with the Reynolds 
number. 
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Figure 5.5: The contribution of particles to the dissipation of dissipation coefficient 
(Cε2p) correlated with the Reynolds number (ReL) and the particle concentration over the 
Stokes number (C/St). 
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CHAPTER SIX 

THE PRODUCTION OF DISSIPATION COEFFICIENT DUE TO MEAN 

VELOCITY GRADIENTS 

 

 

 

 

 

 
In the dissipation transport model, Eq. (3.93), a production of dissipation term due 

to the mean velocity gradients was modeled.  It was not assumed that the coefficient for 

the production of dissipation due to mean velocity gradients is equal to 1.44, as used for 

single phase flows, but rather assumed that the presence of particles may alter this 

coefficient.  In this chapter, the additional effect of particles on the production of 

dissipation coefficient (due to mean velocity gradients) is evaluated. 

 

6.1 Determining the Production of Dissipation Coefficient (Cʹε1) 

 The production of dissipation coefficient due to mean velocity gradients is equal 

to 1.44 for single phase flows.  In order to validate this coefficient, the flow of particles in 

a turbulent channel flow is evaluated.  Assuming the diffusion of kinetic energy near the 

wall in a fully developed channel flow with particles is negligible, the volume averaged 

turbulent kinetic energy equation presented by Crowe and Gillandt (1998) is reduced to 

[ ] [ niinii
n c

V
ckc vuvu

N
P −−+−−= ∑ ρ

βεαα 10 ]    (6.1) 

Assuming that the shear near the wall is constant, the production can be modeled as 
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2

⎟
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⎞
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⎜
⎝

⎛
−=

dy
ud

P Tk υ          (6.2) 

Kulick et al. (1993) showed that the law of the wall profile is valid with particles; with 

this assumption the dissipation near the wall is found to be 

[ ] [ ]niinii
n cc

V vuvu
Ny

u
−−+= ∑ ρα

β
κ

ε τ 13
          (6.3) 

The above equation is the general form of dissipation near the wall.  For many cases, this 

can be simplified by neglecting the redistribution terms.  For such a case, the dissipation 

near the wall can be represented by 

[ 2
3

ii
cc

V vu
y

u
−+=

ρα
β

κ
ε τ ]              (6.4) 

The kinetic energy is also found by assuming a constant shear layer near the wall.  The 

shear at the wall is related to the friction velocity by 

2
2

τμ ε
u

dy
udkC =             (6.5) 

Again, assuming the law of the wall is valid and substituting in the dissipation near the 

wall shows a relation for the particle laden turbulent kinetic energy near the wall of the 

form 
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V vuvvvu
u
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C
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1       (6.6) 

Equations (6.3) and (6.6) assure that production of turbulent kinetic energy due to 

particles and mean velocity gradients is balanced by dissipation near the wall.  In most 

cases the re-distribution terms can be neglected and Eq. (6.6) can be simplified to 

[ ]( )⎟⎟
⎠

⎞
⎜
⎜
⎝
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−+= 2
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2
1 ii

cc

V vu
u
y

C
uk
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τ
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κβ

                (6.7) 
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6.1.1 Calibrating the production coefficient (Cʹε1)  

To calibrate the production of dissipation coefficient, the volume averaged 

turbulent dissipation equation, Eq. (3.93), is reduced for steady, fully developed flow 

conditions 
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Carrying out the derivative in the last term shows 
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Near the wall, the gradient of dissipation is 
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Based on the experimental work of Tsuji et al. (1984), Sheen et al. (1993), Kulick et al. 

(1993) and Paris et al. (2001), the variation in the particle velocity across the channel is 

minimal.  To simplify, the particle velocity and the particle properties are assumed to be 

constant.  Substituting in the velocity gradient based on the law of the wall profile shows 
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Taking a second derivative yields 
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Near the wall the gradient of turbulent kinetic energy is 
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or 
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Again, to simplify, the particle velocity and the particle properties are assumed to be 

constant across the channel.  Substituting in the velocity gradient based on the law of the 

wall profile shows 
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Substituting equation (6.15), (6.12), and (6.11) into equation (6.9) results in 
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(6.16) 

Substituting in the equations for k and ε near the wall, Eq. (6.7) and (6.4) respectively, 

gives 
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(6.17) 

The above equation can be used to determine the production coefficient due to mean 

velocity gradients.  However, from the experimental data, the shear at the wall is not 

given and the von Karman constant (0.4) is questionable in particle laden turbulent flows.  

Additional experimentation is needed to determine these parameters, which are necessary 

to calibrate the coefficient Cʹε1.  However, from the above equation, it is clear that the 

coefficient must be a function of the mass concentration, the Stokes number, and the 

relative Reynolds number of the particle.  Since the data is lacking, a model is developed 

to understand the effects of the volume averaged equation set with the determined 

coefficients and the assumption that Cʹε1 can be treated as a constant (similar to the single 

phase coefficient). 

 

6.2 Modeling with the Production Coefficients 

To validate the volume averaged equation set presented above, we consider the 

data of Kulick et al. (1993) and Paris et al. (2001).  These data sets are challenging to 
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predict with simple models and a more sophisticated model is needed (Graham, 2000).  

Eaton (1995) claims that a new term within the dissipation rate equation is needed to 

account for the production of dissipation due to particles.  The dissipation model derived 

in Chapter 3, Eq. (3.93), includes a production of dissipation due to particles. 

Kulick et al. (1993) and Paris et al. (2001) used the same experimental setup.  

This was a high aspect ratio (11.4:1) vertical channel with a development section of 5.2 

m.  The particles fell down the channel in the same direction that the air was traveling 

and the particle response time was on the order of 130 ms.  The volume fractions of the 

particles are on the order of 10-5, which is clearly two-way coupling and according to 

Elghobashi (1994), thus particle-particle interaction could be ignored.  With these data 

points, the particles should have reached a terminal velocity and the particle velocity 

should have been higher than the air velocity throughout the channel.  However, all the 

data sets show that air velocity exceeds the particle velocity at the center of the channel, 

yet the particle velocity exceeds the air velocity near the wall.  Yamamoto et al. (2001) 

simulated Kulick’s data using large eddy simulation (LES) and a particle collision model.  

Their study shows that particle collisions increase transverse mixing and suggest that this 

mechanism is responsible for the flat particle velocity and concentration profile across the 

channel.  The study of Nasr et al. (2007) also included a particle-particle and particle-wall 

collision model and compared the results to the data of Kulick et al. (1993).  They 

showed that the particle collisions were responsible for flattening the particle velocity 

profile across the channel and also concluded that particle collisions were responsible for 

turbulence attenuation. They also showed that in the absence of particle collisions, the 

particle velocity exceeds the gas velocity and the carrier phase turbulence is augmented.  
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The data presented by Kulick et al. (1993) and Paris et al. (2001) are for steady, 

fully developed, particle laden, turbulent channel flow.  For such a flow, a simple 1-D 

modeling approach can be taken.  Additional assumptions are: uniform particle diameter, 

no mass transfer between the dispersed and continuous phase, particle rotational effects 

are neglected, and the RMS velocity fluctuations of the particles are negligible compared 

to the mean slip velocity.  The formulations for steady, fully developed continuous phase 

flow are as follows. 
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which can be rewritten as 
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where βV is described by Eq. (2.19). 

Continuous Phase Turbulent Kinetic Energy: 
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Continuous Phase Turbulent Dissipation: 
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By assuming that the particle diameter is uniform and neglecting the deviation in particle 

velocity, the above equation can be rewritten as 
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where the turbulent kinematic viscosity (νT) is modeled by Eq. (2.15) and the coefficients 

shown in the above equation are given in Table 6.1. At the wall, the velocity of the fluid 

is zero; the shear at the wall is modeled by 

u
u

kC
w +=

2/14/1
μρ

τ
     

(6.23) 

Near the wall, the production of turbulent kinetic energy is balanced by the dissipation 

and the diffusion is assumed negligible.  The dissipation near the wall is determined by 

Eq. (6.4) and the turbulent kinetic energy is found from Eq. (6.7). 

The finite volume approach was used to model Eqs. (6.19), (6.20), and (6.22).  

The boundary conditions applied at the wall were Eqs. (6.4), (6.7) and (6.23).  The 

particle velocity profile was determined from the experimental data. The turbulent kinetic 

energy was found from the experimental data by assuming that the stream-wise 

fluctuations can be summed with twice the transverse fluctuations, shown as 

2
2

2
1 22 uuk ′⋅+′=              (6.24) 

For the un-laden case, the standard coefficients were used in the k-ε model; for the laden 

cases, the single phase coefficients were used in addition to effects of the dispersed phase 

(see Table 6.1 for the un-laden and laden coefficients). The un-laden piezometric pressure 

gradient was determined from the data of Kulick et al. (1993) and found to be -14.28 

Pa/m.  Kulick et al. (1993) could not measure the laden pressure gradient; Paris et al. 

(2001) did measure the laden pressure gradient but could not justify why it was so high. 

In the experiments of Kulick et al. (1993) and Paris et al. (2001), the continuous phase 

mass flow rate was adjusted for the different particle loadings in order to maintain a 

constant centerline velocity, shown in Table 6.2.  In the model, for the laden cases, the 
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piezometric pressure gradient was iterated until the centerline velocity matched that of 

the experimental data. 

 

6.2.1 Comparison of the Model to Experimental Data 

The un-laden velocity profile and turbulent kinetic energy predicted by the model 

were compared to the data of Kulick et al. (1993) and Paris et al. (2001).  For this case, 

the standard k-ε model was used with the standard coefficients (shown in Table 6.1).  The 

velocity was normalized by the centerline velocity and plotted in terms of y+.  The 

normalized un-laden velocity profile predicted by the model agrees well with the 

measurements, shown in Figure 6.1.  The un-laden turbulent kinetic energy  determined 

by Kulick et al. (1993) using LDA and Paris et al. (2001) using Particle Image 

Velocimetry (PIV) appear to agree well in the range of 200 < y+ < 400 but deviated for y+ 

< 200.  The un-laden turbulent kinetic energy predicted by the model show better 

agreement with the data of Paris et al. (2001) than Kulick et al. (1993) near the wall 

(shown in Figure 6.2).  Towards the center of the channel, the predictions of the model 

show good agreement with both data sets.  

Kulick et al. (1993) obtained air velocity measurements using LDA for various 

particle sizes (50 – 90 μm) and loadings (0 – 0.8).  The data collected by Kulick et al. 

(1993) demonstrate that 50 μm and 90 μm glass particles produce little attenuation, yet 

70 μm copper particles at mass loadings of greater than 0.1 produce significant 

turbulence attenuation.  For the case of 70 μm copper particles at mass loadings of 10% 

and 20%, the experimental data of Kulick is compared to the model predictions.  For the 

particle laden case, the coefficients used in the k-ε equation are shown in Table 6.1.  The 
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velocity is normalized by the centerline velocity and shown in Figure 6.3.  For the 10% 

and 20% mass loading cases, the model tends to under-predict the velocity magnitude 

near the wall.  It is also noticed that the velocity profiles predicted by the model are quite 

different than those found from the experimental data.  The velocity profile predicted by 

the model for a mass loading of 10% shows a slight increase in the carrier velocity near 

the center of the channel while the increase in velocity for a mass loading of 20% is more 

pronounced for y/h > 0.6.  The turbulent kinetic energy predicted by the model is 

compared to experimental data for 10% mass loading (Figure 6.4) and 20% mass loading 

(Figure 6.5).  The model compares well with the experimental data near the wall, but 

deviates towards the center of the channel.  For the 20% mass loading case, a flat profile 

is noticed near the center of the channel.  Although not seen in this data set, a similar flat 

profile for the turbulent kinetic energy near the centerline of a pipe is found in the data of 

Tsuji et al. (1984) and Sheen et al. (1993) for small particles.  However, for both 10% 

and 20% mass loadings, the model tends to under-predict the data near the center of the 

channel. To determine if the model shows a decrease in TKE with increased mass 

loading, a comparison of the two mass loadings is shown in Figure 6.6.  Near the wall, 

the model shows turbulence attenuation for increased mass loading, in good agreement 

with the experimental data.  Near the centerline of the channel, the predictions deviate 

from the measured data.  

Paris et al. (2001) used the same experimental set up as Kulick et al. (1993), 

however Paris used PIV instead of LDA to measure the air velocity and was able to 

reproduce the un-laden flow characteristics found by Kulick et al. (1993).  The data of 

Paris et al. (2001) stops short of the centerline of the channel; no reason is given.  The 
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particle size and loading is listed in Table 6.2.  A comparison of the velocity profile 

normalized by the centerline velocity for the laden case of 20% mass loading is shown in 

Figure 6.7.  The magnitude of the velocity profile is slightly lower than the experimental 

values.  However, unlike the prediction of Kulick’s data, the velocity trend predicted by 

the model agrees well with the data of Paris.  The predicted turbulent kinetic energy is 

compared with the measurements and shown in Figure 6.8.  It can be seen that the model 

agrees well in the range of 0.4 < y/h < 0.6 but deviates near the wall.  

 Part of the reason for these deviations may be explained by the assumption of 

neglecting the re-distribution terms. For most cases involving particle laden flows, 

[ ] iiii vuvvvu δδδδ −>>− 2  and the last terms may be neglected for such cases.  

However, for cases when [ ] 02≈− vu  the redistribution terms may play a significant role 

in modeling turbulent kinetic energy near the wall.  In the data of Kulick (1993) and Paris 

(2001), there is a point in the flow where the continuous phase and dispersed phase 

velocities are equal.  However, the data set does not give correlations for ii vu δδ .  

 Another reason for the deviation of turbulent kinetic energy near the center of the 

channel is the fact that the coefficient (Cε3) was calibrated with minimal data at low 

relative Reynolds numbers.  The data at low relative Reynolds numbers suggested that 

particle loading affects the coefficient.  To evaluate the effectiveness of the additional 

production term in the dissipation model, the production coefficient (Cε3) is varied. 

Within this coefficient, the fit coefficient (Cεp) is varied from zero to 0.060, but the 

exponent m remained at 1.416.  The effect of Cεp on TKE is shown in Figure 6.9.  When 

the coefficient is zero the additional production term due to particle surfaces is 

suppressed, yet the effects of the particles are still included in the turbulent kinetic energy 
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equation.  For such a case the dissipation is modeled as the single phase dissipation with 

the standard coefficients.  This formulation shows a nearly constant turbulent kinetic 

energy across the channel.  Increasing the coefficient to 0.015 shows a drastic reduction 

in TKE.  For a coefficient of 0.015, the TKE profile is nearly matched; however the 

predicted magnitude is higher than seen from the experimental data. As the coefficient is 

increased to 0.060 the TKE near the wall matches well, but near the center of the channel, 

the model under-predicts the measurements and shows a constant TKE.  The normalized 

velocity profiles show that as the production coefficient is reduced, the trend and 

magnitude of the velocity profiles better match the data, shown in Figure 6.10.  It can be 

seen that if the production coefficient were zero, the velocity profile would be over 

predicted; this substantiates that a production of dissipation is needed. Nonetheless a 

better calibration of the coefficient is needed at lower particle Reynolds numbers.   

The other unknown is the production coefficient (Cʹε1) due to the mean velocity 

gradient.  In the derivation of the dissipation equation, the production coefficient was 

assumed to vary with one or more of the fundamental non-dimensional parameters found 

in particle laden flows, namely: particle loading, Stokes number, particle Reynolds 

number, or the Reynolds number of the flow.  The calibration of this coefficient is 

complex and depends on the shear velocity and von Karman constant, both of which are 

unknown in the data presented in the literature.  To simplify, the production coefficient 

(Cʹε1) was assumed constant between the wall and the center of the channel.  To better 

understand the effect of the coefficient, it was varied from its standard value of 1.44 (see 

Figure 6.11).  In Figure 6.11, the fit coefficient for the production of dissipation by 

particles (Cεp) is set to 0.025, and the magnitude of TKE at the center of the channel is 
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matched with the data.  The production of dissipation (Cʹε1) due to mean velocity 

gradients was varied to understand the effects.  The piezometric pressure gradient was 

iterated for each case to maintain the centerline velocity at 10.5 m/s.  If Cʹε1 = 1.6 and Cεp 

= 0.025, the TKE is matched near the wall and at the center of the channel.  However, the 

results show that there is still a constant TKE near the center of the channel and the TKE 

predicted by the model deviates slightly from the data between 0.4 < y/h < 0.9.   The 

normalized velocity profile is shown in Figure 6.12.   

 The predictions of the turbulent dissipation model with an additional production 

term due to the presence of particles are shown to improve the prediction of TKE near the 

wall.  This additional term also accounts for changes in particle mass loading.  Overall, it 

is an improvement over the standard single phase turbulent dissipation model.  For flows 

with low particle Reynolds numbers, the prescribed coefficients are invalid and additional 

studies are needed to validate these conditions.  This type of flow is challenging to 

predict, yet a first attempt at using the volume averaged equations to predict simple 

channel flows appears promising.  
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TABLE 6.1: Model Coefficients 
 
Coefficient Time Averaged 

Equation Set 
Volume Averaged Equation Set 

C′ε1 1.44 1.44 + unknown 
C′ε2 1.92 1.92 + 0.362*(C/St)0.76 
Cε3 - 0.058*(1.92 + 0.362*(C/St)0.76)*Rep

1.416 
κ 0.4 0.4 
Cμ 0.09 0.09  
σk 1.0 1.0  
σε 1.3 1.3  

 
 
TABLE 6.2: Data Parameters 
 
Parameter Kulick et al. 

(1993) 
Paris et al. 

(2001) 
Particle Material Copper Glass 
Particle Diameter (D), μm 70 150 
Particle Density (ρd), kg/m3 8800 2500 
Particle Loading 10%, 20% 20% 
Continuous Phase air air 
Centerline Gas Velocity (Ucl), m/s 10.5 10.5 
Piezometric Pressure Gradient (dPz/dx), Pa/m -14.28 -27.56 
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Figure 6.1:  Comparison of the un-laden velocity profiles predicted by the model to the 
experimental data of Kulick et al. (1993) and Paris et al. (2001). 

 
Figure 6.2: Comparison of the un-laden turbulent kinetic energy profiles predicted by the 
model to the experimental data of Kulick et al. (1993) and Paris et al. (2001). 
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Figure 6.3: Comparison of the velocity profiles predicted by the model to the 
experimental data of Kulick et al. (1993) – Copper particles, 70 μm dia., mass loading 
indicated in legend. 

 
Figure 6.4: Comparison of the particle laden turbulent kinetic energy profiles predicted 
by the model to the experimental data of Kulick et al. (1993) – Copper particles, 70 μm 
dia., 10% mass loading. 
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Figure 6.5: Comparison of the particle laden turbulent kinetic energy profiles predicted 
by the model to the experimental data of Kulick et al. (1993) – Copper particles, 70 μm 
dia., 20% mass loading. 

 

 
Figure 6.6: Comparison of the particle laden turbulent kinetic energy profiles predicted 
by the model to the experimental data of Kulick et al. (1993) – Copper particles, 70 μm 
dia., mass loading indicated in the legend. 
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Figure 6.7: Comparison of the velocity profile predicted by the model to the 
experimental data of Paris et al. (2001) – Glass particles, 150 μm dia., 20% loading. 

 
Figure 6.8: Comparison of the turbulent kinetic energy profile predicted by the model to 
the experimental data of Paris et al. (2001) – Glass particles, 150 μm dia., 20% loading. 
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Figure 6.9: Evaluation of the production of dissipation coefficient due to the particles – 
Kulick et al. (1993), 20% loading, Cεp indicated in the legend. 
 

 
Figure 6.10: Effect of the production of dissipation on the velocity profile – Kulick et al. 
(1993), 20% loading, Cεp indicated in the legend. 
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Figure 6.11: Evaluation of the production of dissipation coefficient due to the mean 
velocity gradient – Kulick et al. (1993), 20% loading, Cʹε1 indicated in the legend. 
 

 
Figure 6.12: Effect of the production of dissipation coefficient due to the velocity profile 
– Kulick et al. (1993), 20% loading, Cʹε1 indicated in the legend. 
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CHAPTER SEVEN 

CONCLUSION AND FUTURE WORK 

 
 
 
 

 

 

 

  

The current work is unique in providing a fundamental approach to obtaining a 

dissipation transport equation for particle laden turbulent flows.  The equation is found 

from volume averaging process and new coefficients are studied and identified. 

 

7.1 Conclusion 

Volume averaging proves to be a powerful tool for analyzing multi-phase flows.   

In this work, a volume averaged turbulence dissipation transport equation that accounts 

for the turbulence dissipation caused by particle surfaces within a turbulent flow is 

derived from fundamentals.  The derivation process reveals an additional production of 

dissipation term that is related to the instantaneous relative velocity gradients at the 

particle surface.  The dissipation rate equation is valid for incompressible flows with no 

mass transfer between the dispersed and continuous phases.  By setting the volume 

fraction of the continuous phase to unity, the volume average dissipation equation 

reduces to the single phase equivalent of the time averaged dissipation equation. 
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The dissipation transport equation was applied to experimental data involving 

generation of homogeneous turbulence by particles.  The ratio of the new production of 

dissipation coefficient (due to the presence of particles) and the dissipation of dissipation 

coefficient was found to be related to the particle diameter and the Taylor length scale.  

At high relative Reynolds numbers, the ratio of the coefficients was found to correlate 

well with the relative Reynolds number of the particles, and at low relative Reynolds 

numbers, the ratios of coefficients appears to be a function of loading in addition to the 

particle Reynolds number. 

The coefficient of the dissipation of dissipation term was determined numerically 

(using DNS) by modeling isotropic homogeneous turbulence decay in a field of 

stationary particles.  The particles were represented by point forces and were placed at 

every grid point within a DNS domain.  The study focused on two Reynolds numbers, 

12.5 and 3.3.  The results show that the coefficient for the dissipation of dissipation due 

to the presence of particles can be correlated to a ratio of the particle mass concentration 

and the Stokes number (C/St) and that this coefficient increased significantly for high 

mass concentration and low Stokes number.   

The coefficient of the production of dissipation term was determined analytically, 

however the data lack the necessary parameters to calibrate this coefficient. Therefore, a 

numerical model was developed and applied to particles in a turbulent channel flow.  The 

model was compared to the data of Kulick et al. (1993) and Paris et al. (2001) and is 

shown to reasonably predict the TKE for turbulent flow with particles in a high aspect 

ratio vertical channel.  This study also shows that the production coefficient due to mean 

velocity gradients and the production coefficient due to the presence of particles are not 
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calibrated correctly for low particle Reynolds number flows.  Additional data are needed 

to understand the effect of particle loading at low particle Reynolds numbers; these data 

should provide better calibration of these coefficients.    

 

7.2 Future Work 

 The coefficients in the dissipation rate equation are studied for simple cases and 

the effects are noted.  However, a significant amount of data is lacking for the parameters 

needed to better understand these coefficients over a wide range of conditions.  Thus 

future work should focus on experimental data in areas of particle laden homogeneous 

turbulent decay, or validating these coefficients at higher Reynolds numbers using DNS.  

Additionally, the von Karman constant should be experimentally studied in particle laden 

turbulent flows in pipes and channels.  And the shear and pressure gradient should be 

measured and validated to understand the effect of the particles.  In addition, the results 

for particle laden jet flows should be studied with the insight provided by the models 

introduced in this work.  
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A.1 Background: 

 The single phase momentum equations can be derived from a control (finite) 

volume approach.  The finite differences of a property are then changed to derivatives of 

that property using the fundamental theorem of calculus.  Ideally, as the limit goes to 

zero, a derivative can be defined at a point; but the derivative of a property of a fluid or 

any physical phenomena cannot be defined at a point.  A true point does not exist in the 

real world.  In a continuum, a point is defined as a volume in the range for which the 

averaged values of the atoms remain constant (see Figure A1).  Thus the derivative in a 

continuum is understood to have a minimal volume of atoms associated with it such that 

it can be mathematically defined as a point.       

Length Scale 

Continuum Atoms Non-Homogeneous 

 min max 

Physical
Property 

 

Figure A1: Range of a Continuum 

In the continuous phase of a multi-phase fluid, it is presumed that a viscous shear 

layer develops near the surface of the dispersed phase particles due to the no-slip 

condition.  Ideally, a continuum point model would be correct; practically, there are many 

particles with shear layers that have to be accounted for.  To complicate matters, in a 

turbulent multi-phase flow, the height of the boundary layer around such small particles 
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can be much less than the particle diameter.  Thus a continuum point model for the 

continuous phase is impractical with our current computational abilities.  Using 

traditional finite volume approaches, an extremely fine moving mesh would be necessary 

to account for all the boundary layers around all particles within the flow field. 

 To improvise, an interim solution is proposed.  Just as in the continuum model, 

volume averaging is a solution to account for the turbulent properties along with the 

properties in the boundary layers developed over the particles.  It is assumed that there is 

a length scale (l) that is much less than the large scale structure (L) as shown in Figure 

A2.  The minimum volume average length scale (l) is chosen such that an incremental 

change in the length scale does not affect the volume average of the continuous phase 

property.  Consider the parameter B that is a function of space and time only: 

( )tzyxBB ,,,=  

dV 

B 

 l 3 L3 
 

Figure A2: Range of Volume Average  

The volume average of parameter B is defined as: 

∫=
cVc
BdV

V
B 1  
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A.2 Volume Averaging the Spatial Derivative: 

 Traditional single phase equations modeling fluid flow involve a spatial gradient.  

In two-phase flow, the volume average is applied to the continuous phase in order to 

account for all the surface effects near the particles.  To use a volume averaged parameter 

in the continuous phase, the volume average of a gradient must also be known.  The 

volume average of a spatial gradient of parameter B is defined as: 

∫ ∂
∂

=
∂
∂

cV ici
dV

x
B

Vx
B 1  

Consider the 3-D multi-phase flow shown in Figure A3 (the third dimension is 

into the page).  This flow represents particles in a gas flowing through a pipe.  Particle-

wall and particle-particle collisions are also shown to understand the effect of volume 

averaging the gradient of a parameter of the continuous phase.  

The flow shown in Figure A3 is considered a snapshot of the actual flow at time t 

= to.  Thus the dispersed and continuous phases are frozen in space at a single time (the 

volume average of a time gradient will be discussed later).  The red box is a sample 

volume of size l3.  The vector xk represents the center of the sample volume relative to 

some absolute coordinate reference frame.  The vector γk extends from the center of the 

sampling volume to the center of every particle of the dispersed phase.  The vector ξk 

extends from the center of the particle to the surface of the particle. The vector ψk is the 

sum of the vectors xk , γk , and ξk.  The incremental change in the position of the sampling 

volume is represented by Δxk (shown by the dashed magenta box).   
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Figure A3:  Multiphase Flow Frozen in Time and Space with Particle-Particle 

Collision and Particle-Wall Collision at time t = to with averaging volume l 2 and 
large scale L2. 

 

It can be shown that the derivative of an integrated parameter is equal to the integrated 

rate of change of that parameter at the boundary as shown in equation [1],  

∫∫∫ ∂
∂

+
∂

∂
=

∂
∂

vdc S
k

i

k
S

k
i

k
Vi

dn
x

Bdn
x

BBd
x

ζϕϖψλ              [1] 

where Sd represents all the surfaces of the dispersed phase within the sample volume and 

Sv represents the continuous phase boundary surfaces on edges of the sampling volume 

and nk is the unit vector outward normal to the surface.  Analyzing the first term on the 

right hand side of Eqn [1], it is found that for all particles (including collision and those 

crossing the sampling volume surface) within the sampling volume the gradient of ψk 

with respect to xi is the tangent vector at the surface of the particle.   
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Figure A4:  Representation of the change in ψk vector in relation to the tangent 

along the surface 
 
 

The surface vector can be represented by the following equation:   

kkkk x ξγψ ++=              [2] 

Displacing the vector xk by a distance Δxk, then the total is shown to be: 

kkkkkkkk xx ξξγγψψ Δ++Δ++Δ+=Δ+                [3] 

Subtracting Eq. [2] from Eq. [3] shows the displacement of the surface vector: 

kkkk x ξγψ Δ+Δ+Δ=Δ          [4] 

Dividing Eq. [4] by Δxi and taking the limit as 0→Δ ix yields: 

i

k

i

k

i

k

i

k

xx
x

xx ∂
∂

+
∂
∂

+
∂
∂

=
∂

∂ ξγψ        [5] 

Since the vector γk terminates at the center of the particle, and the center position of the 

particle is stationary, taking a small step in the xk direction shows that Δγk = -Δxk (shown 

in Figure A4).  Thus Eq. [5] is shown to be: 

i

k

i

k

i

k

i

k

xx
x

x
x

x ∂
∂

+
∂
∂

+
∂
∂

−=
∂

∂ ξψ                            [6] 

i

k

i

k

xx ∂
∂

=
∂

∂ ξψ                      [7] 
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Eq. [7] shows that the vector Δψk is equal to the vector Δξk from the center of the particle 

to the surface of the particle.  Thus Δψk lies tangent to the surface of the particle since the 

particle surface is not changing.  Substituting Eq. [7] into the first term on the right hand 

side of Eq. [1] shows the tangent vector dotted with the normal vector: 

0=
∂
∂

=
∂

∂
∫∫

dd S
k

i

k
S

k
i

k dn
x

Bdn
x

B ϖξϖψ              [8] 

Substituting Eq. [8] into Eq. [1]: 

∫∫ ∂
∂

=
∂
∂

vc S
k

i

k
Vi

dn
x

BBd
x

ζϕλ                   [9] 

The resultant vector ϕk is the sum of the vector representing the center of the 

sampling volume (xk) in addition to the vector emanating from the center of the sampling 

volume to the surface of the sampling volume (ωk) – see Figure A5.  Mathematically, this 

is shown to be: 

kkk x ωϕ +=          [10] 

Using the same technique outlined above, Eq. [10] can altered to form: 

i

k

i

k

i

k

xx
x

x ∂
∂

+
∂
∂

=
∂
∂ ωϕ            [11] 

Here it is assumed that the sample volume boundaries do not change with a change in the 

position of the sample volume (see Figure A5).  In other words, if the position of the 

sample volume changes, the volume does not rotate or deform (as shown in Figure A5), 

thus 0=
∂
∂

i

k

x
ω  (zero tensor).  However, the partial of xk with respect to xi is zero for all 

terms other than when k = i.  Thus Eq. [11] is reduced to: 

ik
i

k

i

k

x
x

x
δϕ

=
∂
∂

=
∂
∂              [12] 
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Figure A5:  Representation of the change in ψi vector in relation to the change in 
position of the sampling volume 

 
Substituting Eq. [12] into Eq. [9], and recalling that the size of the sample volume is 

constant and independent of position, then 

∫∫ =
∂
∂

vc S
kik

cVci
dnB

V
Bd

Vx
ζδλ 11              [13] 

Recall that in tensor notation, ikik nn =δ .  Also recall that Eq. [1] holds if λ = V and ζ = 

S. Thus Eq. [13] is then reduced to: 

∫∫ =
∂
∂

vc S
i

cVci
dSBn

V
BdV

Vx
11              [14] 

In order to account for the parameter flux at the particle surface, Green’s theorem for the 

continuous phase is used: 

∫∫∫ +=
∂
∂

dvc S
i

cS
i

cV ic
dSBn

V
dSBn

V
dV

x
B

V
111            [15] 

113 
 



www.manaraa.com

Solving Eq. [15] for the surface flux term and substituting it into Eq. [14]: 

∫∫∫ −
∂
∂

=
∂
∂

dcc S
i

cV icVci
dSBn

V
dV

x
B

V
BdV

Vx
111              [16] 

Eq. [16] is the volume averaged equation; it can be shown that the volume average of the 

gradient of parameter B(x,y,z,t) is then: 

∫+
∂
∂

=
∂
∂

dS
i

cii
dSBn

Vx
B

x
B 1                       [17] 

Taking ni to be outward normal from the dispersed phase, then 

∫−
∂
∂

=
∂
∂

dS
i

cii
dSBn

Vx
B

x
B 1                       [18] 

A.3 Volume Averaging the Temporal Derivative 

 Consider a particle such that its central position is spatially frozen and the surface 

varies with time only.  If the mass transfer across the surface of the particle is zero, then 

the particle diameter is constant and the volume average of the parameter B is then: 

t
B

t
B

∂
∂

=
∂
∂       [19] 

However, if there is mass transfer across the boundary, or if the diameter changes with 

time (as shown in Figure A6), then the position of the particle surface is represented by: 

n r(to) Δr /Δt 
r(to+Δt) 

 

Figure A6:  Representation of the change in radius of a particle for a change in time. 
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( ) ∫∫∫∫ ∂
∂

++
∂
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+
∂
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=
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vdcc S
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i
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iiii
VV

dSn
t
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t
BBdV

t
ψχ         [20] 

where χi is the position of the center of the particle. The boundary surfaces of the 

continuous phase sample volume do not change with time (i.e. ψi= f(xi) only), thus: 

0=
∂

∂
∫

vS
i

i dSn
t

B
ψ         [21] 

If evaporation or condensation is occurring, then mass transfer is occurring at the particle 

surface and the radius of the surface of the particles can change will change with time.  

Applying Eq. [21] to Eq. [20] yields: 

( )∫∫∫ +
∂
∂

+
∂
∂

=
∂
∂

dcc S
iiii

VV
dSnnr

t
BdV

t
BBdV

t
χ          [22] 

Since the sampling volume is constant with time, the above equation is shown to be: 

( ) ∫∫∫ ∂
∂

=+
∂
∂

−
∂
∂

cdc VcS
iiii

cVc
dV

t
B

V
dSnnr

t
B

V
BdV

Vt
111 χ  

The above equation shows that ni is in the direction from the continuous phase to the 

dispersed phase.  It makes sense to make ni outward normal from the dispersed phase, 

thus the volume average of a time derivative of a property is then shown to be: 

( )∫ ++
∂
∂

=
∂
∂

dS
iii

c
dSrnvB

Vt
B

t
B

&
1                 [23] 

where vi is the velocity at the center of the particle. 
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C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
C~~~~~~~~~  PARTICLE_LADEN TURBULENT FLOW SOLVER ~~~~~~~~~~~~ 
C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
C~~~~~~~~~~~~1D, Uniform Grid, Steady, Fully Developed Flow ~~~~~~~~~~~~~~~ 
C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
C~~~~~Variable Definitions ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
C     yl = domain length in j direction 
C     rho = density 
C     amu = molecular viscosity 
C     n = iteration number 
C     jpmax = total grid points in j direction 
C     jp = j direction counter 
C     u = u cell velocities 
C     epsu, = u-vel convergence criteria. 
C     anu,asu,apu = coefficients for u-momentum equations 
C     ank,ask,apk = coefficients for turb kinetic energy equation 
C     ane,ase,ape = coefficients for turb dissipation equation 
C     u_pre = holds the previous values of velocity for convergence check 
C     y_cor = provide correct y values for file output. 
C     a = used to hold coefficients for TDMA 
C     b = used to hold source term in TDMA 
C     utau = friction velocity 
C     tauw = shear at the wall 
C     pdx = piezometric pressure gradient 
C     uplus = nondimensional velocity in wall coordinates 
C     yplus = nondimensional length in wall coordinates 
C     eps = turbulent dissipation 
C     kpr,epr,amutpr = previous kin, epsilon, turb visc 
C     kin = turbulent kinetic energy 
C     amut = turbulent viscosity (dynamic) 
C     prod = component of turbulent production--(du/dy)**2 
C     tauwtl,tauwtu = turb shear at the wall (l=lower, u=upper) 
C     ce1, ce2 = dissipation coefficients (1.44, 1.92) 
C     sigk, sige = turbulent schmidt numbers of k and epsilon eq. (1.0, 1.3) 
C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
      implicit none 
       
C     INITIALIZE GLOBAL VARIABLES 
      INTEGER jpmax 
      INTEGER n,jp,jn,mx,jpp,jnp,itr,itm,ito,nke 
      PARAMETER (jpmax=50,mx=50) 
      DOUBLE PRECISION yl,y_cor(jpmax),pdy(jpmax),yp 
      DOUBLE PRECISION rho(jpmax),pdx,aspra,amas,tauw 
      DOUBLE PRECISION u(jpmax),u_pre(jpmax),asu(jpmax),anu(jpmax) 
      DOUBLE PRECISION apu(jpmax),amutpr(jpmax),prodpr(jpmax) 
      DOUBLE PRECISION amu(jpmax),amut(jpmax),prod(jpmax) 
      DOUBLE PRECISION utau(jpmax),uplus(jpmax),yplus(jpmax) 
      DOUBLE PRECISION kin(jpmax),eps(jpmax),kpr(jpmax),epr(jpmax) 
      DOUBLE PRECISION cmu,ce1,ce2,sigk,sige,kap,ero,gr 
      DOUBLE PRECISION ru,rk,re,rp,rlamu,rlamk,rlame,rlamp,tauwtl,tauwtu 
      DOUBLE PRECISION adrp,rhop(jpmax),fdr(jpmax),rer(jpmax),pno(jpmax) 
      DOUBLE PRECISION alphd(jpmax),cst(jpmax),v(jpmax),betav(jpmax) 
      DOUBLE PRECISION conc(jpmax),taup(jpmax),adf(jpmax) 
      DOUBLE PRECISION adi(jpmax),ain(jpmax) 
 
C     GEOMETRY PARAMETERS 
      PARAMETER (yl=0.04) !chan height = m 
      PARAMETER (aspra = 11.425) !chan aspect ratio (width to height) 
 
C     PARTICLE PARAMETERS 
      PARAMETER (adrp = 70.0E-6)!m, particle diameter 
      PARAMETER (amas = 0.2)! mdot_d/mdot_c 
 
C     TURBULENCE PARAMETERS 
      PARAMETER (cmu=0.09,sigk=1.0,sige=1.3,kap=0.41) 
      PARAMETER (ero=9.8)! wall roughness parameter (E), see Schliting, smooth=9.8 
      PARAMETER (nke=0)! 0=single phase, 1=particles present 
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      if(nke.eq.0) then 
       ce1 = 1.44 
       ce2 = 1.92 
      else 
       ce1 = 1.44 
       ce2 = 1.92 
      endif 
 
C     GRAVITY 
      gr = 9.81 !m/s^2 
C 
C     Define density, viscosity, and particle parameters 
      do 27 jp=1,jpmax 
      rho(jp) = 1.2 ! kg/m^3 - fluid density 
      rhop(jp) = 8800. ! kg/m^3 - particle density 
      amu(jp) = 1.8E-5 ! kg/m*s 
      fdr(jp) = 1.0 ! drag factor 
      rer(jp) = 1.0 ! relative reynolds number 
      pno(jp) = 10000 ! number of particles 
      alphd(jp) = 0.000001 ! dispersed phase volume fraction 
   27 continue 
 
      do jp=2,jpmax 
      u_pre(jp)=0.0 
      enddo 
       
C     SPECIFY THE PRESSURE GRADIENT 
C     this term is manually iterated 
       pdx = -14.28 !Pa/m  (peiziometric) pressure gradient (dp/dx) 
 
C     CONVERGENCE CRITERIA (u-velocity) 
      rlamu=0.001 
      rlamk=0.001 
      rlamp=0.001 
      rlame=0.001 
       
C     SETUP THE STRUCTURED OR UNSTRUCTURED GRID 
      call grid(jpmax,yl,pdy,y_cor) 
 
C     DETERMINE SHEAR STRESS AT THE WALL, INITIALIZE U+ AND Y+ VALUES 
       tauwtl = -pdx*yl/2.*aspra/(1.+aspra) 
       tauwtu = -pdx*yl/2.*aspra/(1.+aspra) 
       utau(2) = sqrt(tauwtl/rho(2)) 
       utau(jpmax-1) = sqrt(tauwtu/rho(jpmax-1)) 
       yplus(2) = rho(2)/amu(2)*(y_cor(2))*utau(2) 
      if(yplus(2).lt.1.0) then 
       print*, 'yplus(2) =',yplus(2) 
       pause 
      else 
       do jp = 2,jpmax/2 
        jn = jpmax+1-jp 
       yplus(jp) = rho(jp)/amu(jp)*(y_cor(jp))*utau(2) 
       uplus(jp) = 1/kap*dlog(ero*yplus(jp)) 
       yplus(jn) = yplus(jp) 
       uplus(jn) = uplus(jp) 
       enddo 
      yplus(1) = 0. 
      yplus(jpmax) = 0. 
      uplus(1) = 0. 
      uplus(jpmax) = 0. 
      endif 
 
C     SETTING WALL BOUNDARY CONDITIONS 
       u(1) = 0. 
       u(jpmax) = 0. 
       u(2) = uplus(2)*utau(2) 
       u(jpmax-1) = uplus(jpmax-1)*utau(2) 
      do jp = 3,jpmax-2 
       u(jp) = uplus(jp)*utau(2) 
      enddo 
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       kin(1) = 0. 
       kin(jpmax) = 0. 
       kin(2) = utau(2)**2/sqrt(cmu) 
       kin(jpmax-1) = utau(jpmax-1)**2/sqrt(cmu) 
       eps(2) = utau(2)**3*uplus(2)/(pdy(2)/2.) 
       eps(jpmax-1) = utau(jpmax-1)**3*uplus(jpmax-1)/(pdy(jpmax-1)/2.) 
       eps(1) = eps(2) 
       eps(jpmax) = eps(jpmax-1) 
       amut(1) = 0. 
       amut(2) = cmu*kin(2)**2/eps(2) 
       amut(jpmax-1) = cmu*kin(jpmax-1)**2/eps(jpmax-1) 
       amut(jpmax) = 0. 
 
      open(9,file='y-u-plus.dat') 
      write(9,*)'j,ycor,yplus,uplus,u' 
      do 411 jp=1,jpmax 
      write(9,410)jp,',',y_cor(jp),',',yplus(jp),',',uplus(jp),',',u(jp) 
  410 format(i8,a2,f15.10,a2,f15.10,a2,f15.10,a2,f15.10) 
  411 continue 
      close(unit=9) 
        
C     INITIALIZING TURBULENCE PARAMETERS K, EPSILON AND TURB VISC. 
      do jp = 2,jpmax-1 
      v(jp) = 1. !this cannot be initialized as zero 
      kin(jp) = kin(2) 
      eps(jp) = eps(2) 
      amut(jp) = amut(2) 
      amutpr(jp) = amut(jp) 
      kpr(jp) = kin(jp) 
      epr(jp) = eps(jp) 
      enddo 
       
C     SOLVE FOR THE VELOCITY GRADIENTS IN THE PRODUCTION TERM 
      call bousq(jpmax,u,prod,kin,amut,rho,pdy,eps,utau,kap) 
      if(nke.eq.0) goto 189 
      call partv(jpmax,mx,u,v,y_cor,pdy,rho,gr,rer,adrp,fdr,amu, 
     1                 pno,alphd,cst,rhop,betav,amas,conc,yl,taup) 
  189 continue 
 
C     INITIALIZING ITERATION COUNTER 
      ito = 0 
C=====MAIN ITERATION LOOP============================================== 
C 
  200 ito = ito + 1 
 
C     SETTING PREVIOUS VELOCITY, TKE AND TURB VISC VALUES VALUES 
      do jp=2,jpmax-1 
      u_pre(jp)=u(jp) 
      kpr(jp) = kin(jp) 
      epr(jp) = eps(jp) 
      prodpr(jp) = prod(jp) 
      amutpr(jp) = amut(jp) 
      enddo 
C 
      do 230 itr = 1,100 
 
C     SOLVE TURBULENT DISSIPATION EQUATION 
      call diss(mx,jpmax,pdy,epr,kpr,eps,tauwtl,tauwtu,nke, 
     1  u,rho,amut,prod,kin,amu,y_cor,ce1,ce2,sige,cmu,kap,amutpr, 
     1  fdr,alphd,adrp,v,rer,cst,utau,uplus,betav,ito) 
      
C     UPDATE THE TURBULENT VISCOSITY, UPLUS AND YPLUS 
      do jp = 2,jpmax-1 
      amut(jp) = rho(jp)*cmu*kin(jp)**2/eps(jp) 
      enddo 
  230 continue 
 
C     SOLVE TURBULENT KINETIC ENERGY EQUATION 
      call kinen(mx,jpmax,pdy,sigk,cmu,kin,utau,kap,tauwtl,tauwtu, 
     1 rho,amut,prod,eps,amu,u,y_cor,uplus,kpr,epr,amutpr,betav,nke, 
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     1 v,alphd,ito) 
      
C     UPDATE THE TURBULENT VISCOSITY, UPLUS AND YPLUS 
      do jp = 2,jpmax-1 
      amut(jp) = rho(jp)*cmu*kin(jp)**2/eps(jp) 
      enddo 
 
      do 240 itr = 1,1000 
C     SOLVE FOR CELL PARTICLE-VELOCITY 
      if(nke.eq.0) goto 235 
      call partv(jpmax,mx,u,v,y_cor,pdy,rho,gr,rer,adrp,fdr,amu, 
     1                 pno,alphd,cst,rhop,betav,amas,conc,yl,taup) 
  235 continue 
 
C     SOLVE FOR CELL U-VELOCITY 
      call uvel(mx,rho,amu,pdy,kin,pdx,y_cor, 
     1    u_pre,u,jpmax,amut,cmu,uplus,amutpr,tauwtl,tauwtu,nke, 
     1    v,alphd,rhop,fdr,taup,eps,ito) 
  240 continue 
 
C     SOLVE FOR THE VELOCITY GRADIENTS IN THE PRODUCTION TERM 
      call bousq(jpmax,u,prod,kin,amut,rho,pdy,eps,utau,kap) 
       
C     UPDATE U+ AND Y+ 
      do itr = 1,100 
       tauw = rho(2)*cmu**0.25*kin(2)**0.5/uplus(2)*u(2) 
       tauwtl = tauw 
       tauwtu = tauw 
       utau(2) = sqrt(tauw/rho(2)) 
       yplus(2) = rho(2)/amu(2)*(y_cor(2))*utau(2) 
       if(yplus(2).le.11.63) then 
       uplus(2) = yplus(2) 
       endif 
C 
       if(yplus(2).gt.11.63) then 
       uplus(2) = 1/kap*dlog(ero*yplus(2)) 
       endif 
       yplus(jpmax-1) = rho(jpmax-1)/amu(jpmax-1)*(y_cor(2))*utau(2) 
       if(yplus(jpmax-1).le.11.63) then 
       uplus(jpmax-1)=yplus(jpmax-1)!*(1.-0.25*(yplus(jpmax-1)/14.5)**3) 
       endif 
C 
       if(yplus(jpmax-1).gt.11.63) then 
       uplus(jpmax-1) = 1/kap*dlog(ero*yplus(jpmax-1)) 
       endif 
       enddo 
C 
       do jp = 3,jpmax-2 
        jn = jpmax+1-jp 
       uplus(jp) = u(jp) / utau(2) 
       if(jp.le.jpmax/2) then 
       yplus(jp) = y_cor(jp)*utau(2)*rho(jp)/amu(jp) 
       yplus(jn) = yplus(jp) 
       endif 
       enddo 
 
C     CHECK THE CONVERGENCE OF THE SOLUTION 
      ru = 0. 
      rk = 0. 
      rp = 0. 
      re = 0. 
      do jpp=2,jpmax-1 
      ru=ru+(u(jpp)-u_pre(jpp))**2 
      rk=rk+(kin(jpp)-kpr(jpp))**2 
      rp=rp+(prod(jpp)-prodpr(jpp))**2 
      re=re+(eps(jpp)-epr(jpp))**2 
      enddo 
      ru = sqrt(ru/(jpmax-2)) 
      rk = sqrt(rk/(jpmax-2)) 
      rp = sqrt(rp/(jpmax-2)) 
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      re = sqrt(re/(jpmax-2)) 
      if(ru.gt.rlamu.or.rk.gt.rlamk.or.rp.gt.rlamp. 
     1or.re.gt.rlame) then 
      if (mod(ito,20).eq.0)then 
      write(*,*)'iteration number',ito 
      print*,'residuals are not converged' 
      write(*,*)'u-res  k-res  prod-res  eps-res' 
      write(*,*) ru,rk,rp,re 
      print*,'velocity =',u(2),u(3),u(4),u(jpmax/2) 
      print*,'Tau_wall_turb =',tauw 
      print*,'u+ =',uplus(2),'  y+ =',yplus(2) 
      print*,'KE =',kin(2),kin(3),kin(4),kin(10) 
      print*,'DISS =',eps(2),eps(3),eps(4),eps(10) 
      print*,'PROD=',prod(2),prod(3),prod(4),prod(10) 
      print*,'AMUT=',amut(2),amut(3),amut(4),amut(10) 
      endif 
      goto 200 
      endif 
C     PRINT FINAL VALUES 
      write(*,*)'final values' 
      write(*,*)'u-res  k-res  prod-res  eps-res' 
      write(*,*) ru,rk,rp,re 
      print*, u(2) 
      print*,'Tau_wall =',tauw 
      print*,'u+ =',uplus(2),'  y+ =',yplus(2) 
      write(*,*)'total iterations: ',ito,'\n' 
 
C     WRITE DATA TO FILES 
      open(73,file='vel2.dat') 
      write(73,*) 'TITLE = "1-D CHANNEL FLOW"' 
      write(73,*) 'VARIABLES = "Y-DIR", "U", "UPLUS", "YPLUS","KE", 
     1 "DISS"' 
      write(73,*) 'ZONE T = "VEL", J = ',jpmax, 
     & ', F = POINT' 
      do  jp=1,jpmax 
      write(73,450)y_cor(jp),u(jp),uplus(jp),yplus(jp),kin(jp),eps(jp), 
     1amut(jp),v(jp),alphd(jp),cst(jp),rer(jp),prod(jp) 
  450 FORMAT(2X,F12.6,2X,F12.6,2X,F12.6,2X,F20.14,2X,F30.14,2X,F30.14, 
     12X,F30.14,2X,F12.6,2X,F20.14,2X,F20.14,2X,F20.14,2X,F20.6) 
      enddo 
      close(unit = 73) 
 
      write(*,*) 'Program is done' 
 
      STOP 
      END 
 
C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
C~~~~~~~~~~~~~~~~~~~~~~~ END MAIN PROGRAM ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
 
C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
C~~~~~~~~~~~~~~~~~UNIFORM GRID CREATION SUBROUTINE ~~~~~~~~~~~~~~~~~~~~ 
C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
      subroutine grid(jpmax,yl,pdy,y_cor) 
 
      INTEGER jpmax,jp 
      DOUBLE PRECISION pdy(jpmax),yl,yint 
      DOUBLE PRECISION y_cor(jpmax) 
 
C     UNIFORM GRID------------------------------------------------------ 
      do 13 jp=1,jpmax 
      pdy(jp) = yl/(float(jpmax-2)) 
   13 continue 
 
      do j=1,jpmax 
      if (j.eq.1) then 
      y_cor(j)=0.0 
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      elseif (j.eq.2) then 
      y_cor(j)=pdy(1)/2. 
      elseif (j.gt.2.and.j.lt.jpmax)  then 
      y_cor(j)=y_cor(j-1)+pdy(j) 
      elseif (j.eq.jpmax) then 
      y_cor(j)=y_cor(j-1)+pdy(j)/2.0 
      endif 
      enddo 
 
C----------------------------------------------------------------------- 
 
      open(9,file='grid.dat') 
      write(9,*)'j,ycor,pdy' 
      do 422 jp=1,jpmax 
      write(9,409)jp,',',y_cor(jp),',',pdy(jp) 
  409 format(i8,a2,f15.10,a2,f15.10) 
  422 continue 
      close(unit=9) 
 
      RETURN 
      END 
       
C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
C~~~~~~~~~~~~~~~~~~ U-VELOCITY SOLVER SUBROUTINE ~~~~~~~~~~~~~~~~~~~~~ 
C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
      subroutine uvel(mx,rho,amu,pdy,kin,pdx,y_cor, 
     1  u_pre,u,jpmax,amut,cmu,uplus,amutpr,tauwtl,tauwtu,nke, 
     1  v,alphd,rhop,fdr,taup,eps,ito) 
      INTEGER jp,jpmax,k,nke,ito 
      DOUBLE PRECISION asu(jpmax),anu(jpmax),apu(jpmax) 
      DOUBLE PRECISION u(jpmax),uplus(jpmax),kin(jpmax),u_pre(jpmax) 
      DOUBLE PRECISION pdy(jpmax),y_cor(jpmax),uvpri(jpmax),cmu,pdx 
      DOUBLE PRECISION a(mx,3),b(mx),wu,pi,alp,sc(jpmax),sp(jpmax) 
      DOUBLE PRECISION amup(jpmax),fdr(jpmax),v(jpmax) 
      DOUBLE PRECISION rho(jpmax),amu(jpmax),amut(jpmax),amutpr(jpmax) 
      DOUBLE PRECISION fs3,fn2,fnj2,fsj1,tauwtl,tauwtu 
      DOUBLE PRECISION taup(jpmax),alphd(jpmax),rhop(jpmax),eps(jpmax) 
 
      alp = 1.0 
      do jp=1,jpmax 
      if (ito.gt.500000) then 
      amup(jp) = amut(jp) 
      else 
      amup(jp) = amut(jp)+amu(jp) 
      endif 
      enddo 
C     Velocity under relaxation factor 
      wu = 0.8 
 
      pi = 4.0*atan(1.0) 
C     Setting the coefficients 
 
      do 12 jp=3,jpmax-2 
      anu(jp)=2.0*(amup(jp)*amup(jp+1)/(amup(jp)+amup(jp+1))) 
     1 /(pdy(jp)) 
      asu(jp)=2.0*(amup(jp)*amup(jp-1)/(amup(jp)+amup(jp-1))) 
     1 /(pdy(jp)) 
      if(nke.eq.0) then 
      sp(jp)=0. 
      else 
      sp(jp)= alphd(jp)/(1-alphd(jp))*rhop(jp)*fdr(jp)/taup(jp) 
      endif 
      apu(jp)=(anu(jp)+asu(jp)+sp(jp)*pdy(jp))/wu 
      if(apu(jp).lt.0.) print*,'apu =',apu(jp) 
   12 continue 
    
      anu(2)=2.0*(amup(2)*amup(3)/(amup(2)+amup(3))) 
     1 /(pdy(2)) 
      asu(2)=0. 
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      if(nke.eq.0) then 
      sp(2)= rho(2)*cmu**0.25*kin(2)**0.5/uplus(2) 
      else 
      sp(2)= rho(2)*cmu**0.25*kin(2)**0.5/uplus(2) 
     1       +alphd(2)/(1-alphd(2))*rhop(2)*fdr(2)/taup(2)*pdy(2) 
      endif 
      apu(2)=(anu(2)+asu(2)+sp(2))/wu 
       
      anu(jpmax-1)=0. 
      asu(jpmax-1)=2.0*(amup(jpmax-1)*amup(jpmax-2)/ 
     1 (amup(jpmax-1)+amup(jpmax-2)))/(pdy(jpmax-1)) 
      if(nke.eq.0) then 
      sp(jpmax-1)= rho(jpmax-1)*cmu**0.25*kin(jpmax-1)**0.5 
     1 /uplus(jpmax-1) 
      else 
      sp(jpmax-1)= rho(jpmax-1)*cmu**0.25*kin(jpmax-1)**0.5 
     1 /uplus(jpmax-1) 
     1 +alphd(jpmax-1)/(1-alphd(jpmax-1))*rhop(jpmax-1) 
     1 *fdr(jpmax-1)/taup(jpmax-1)*pdy(jpmax-1) 
      endif 
      apu(jpmax-1)=(anu(jpmax-1)+asu(jpmax-1)+sp(jpmax-1)) 
     1 /wu 
 
C~~~~~TDMA~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
      do 17 jp=2,jpmax-1 
      k=jp-1 
      a(k,3)=-anu(jp) 
      a(k,2)=apu(jp) 
      a(k,1)=-asu(jp) 
      if(nke.eq.0) then 
      b(k)=-pdx*pdy(jp)+(1.-wu)*apu(jp)*u_pre(jp) 
      else 
      b(k)=-pdx*pdy(jp) 
     1 +alphd(jp)/(1.-alphd(jp))*rhop(jp)*fdr(jp)/taup(jp)*v(jp)*pdy(jp) 
     1 +(1.-wu)*apu(jp)*u_pre(jp) !particle source is linearized source 
      endif 
   17 continue 
 
C     Call TDMA 
      call thomas(jpmax-2,mx,a,b) 
      do 18 jp=2,jpmax-1 
   18 u(jp)=b(jp-1) 
 
      RETURN 
      END 
C 
C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
C~~~~~~~~~~~~~~~~~ PARTICLE VELOCITY SUBROUTINE ~~~~~~~~~~~~~~~~~~~~~~ 
C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
      subroutine partv(jpmax,mx,u,v,y_cor,pdy,rho,gr,rer,adrp,fdr,amu, 
     1                 pno,alphd,cst,rhop,betav,amas,conc,yl,taup) 
 
      INTEGER jpmax,mx,jp,itrn 
      DOUBLE PRECISION y_cor(jpmax),pdy(jpmax),fdr(jpmax),pno(jpmax) 
      DOUBLE PRECISION cst(jpmax),taup(jpmax),betav(jpmax),vpr(jpmax) 
      DOUBLE PRECISION u(jpmax),rho(jpmax),amu(jpmax),alphd(jpmax),yl 
      DOUBLE PRECISION v(jpmax),rhop(jpmax),rer(jpmax),adrp,gr,sumv,ucl 
      DOUBLE PRECISION resv,avelp(jpmax),tauf(jpmax),amas,conc(jpmax) 
      REAL pi 
       pi = 4.0*atan(1.0) 
 
  101 continue 
      sumv = 0. 
 
      do 10 jp = 2,jpmax-1 
      vpr(jp) = v(jp) 
      avelp(jp) = rho(jp)*u(jp)/(rhop(jp)*v(jp)) 
C     Particle volume fraction 
      alphd(jp) = amas*avelp(jp)/(1+amas*avelp(jp)) 
C     Relative Reynolds number 
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      rer(jp) = rho(jp)/amu(jp)*abs(u(jp)-v(jp))*adrp 
C     Drag fractor 
      fdr(jp) = 1.0 + 0.15*rer(jp)**0.687 
C     Particle response time 
      taup(jp) = rhop(jp)*adrp**2/(18.*amu(jp)) 
C     Fluid reponse time 
      tauf(jp) = yl/u(jp) 
C     Particle concentration 
      conc(jp) = alphd(jp)*rhop(jp)/((1-alphd(jp))*rho(jp)) 
C     Particle Number per unit Volume 
      pno(jp) = alphd(jp)/(pi/6*adrp**3) 
C     hydraulic drag factor 
      betav(jp) = alphd(jp)*rhop(jp)*fdr(jp)/taup(jp) 
C 
C     TERMINAL VELOCITY EQN 
C      v(jp) = gr*adrp**2*(rhop(jp)-rho(jp))/(18.0*amu(jp)*fdr(jp)) 
C     1 + u(jp) 
C 
C     FIXED VELOCITY EQN - Determined from Kulick's data 
      if(jp.le.jpmax/2) then 
        jn = jpmax+1-jp 
       if(amas.eq.0.1) then 
       v(jp) = -5625.4*y_cor(jp)**2 + 266.5*y_cor(jp) + 5.6956 
       else 
       v(jp) = -2460.2*y_cor(jp)**2 + 144.13*y_cor(jp) + 6.153 
       endif 
       v(jn) = v(jp) 
      endif 
C     Concentration over Stokes Number (C/St) 
      cst(jp) = conc(jp)*tauf(jp)/taup(jp) 
      sumv = sumv+(v(jp)-vpr(jp))**2 
   10 continue 
      resv = sqrt(sumv) 
      if(resv.gt.1.E-9) goto 101 
      RETURN 
      END 
       
C ====== TURBULENCE SUROUTINES ======================================= 
C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
C~~~~~~~~~~~~~~~ BOUSINESQ APPROX. AND PRODUCTION TERM ~~~~~~~~~~~~~~~ 
C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
      subroutine bousq(jpmax,u,prod,kin,amut,rho,pdy,eps,utau,kap) 
      INTEGER jpmax,jp 
      DOUBLE PRECISION u(jpmax),pdy(jpmax),amut(jpmax),rho(jpmax) 
      DOUBLE PRECISION prod(jpmax),kin(jpmax),eps(jpmax) 
      DOUBLE PRECISION adudy(jpmax),utau(jpmax),kap 
 
C     Determine the velocity gradients (central diff scheme) 
      do jp=3,jpmax-2 
 
      adudy(jp) = (u(jp+1)-u(jp-1))/(2.0*pdy(jp)) 
      prod(jp) = (adudy(jp)*adudy(jp)) 
 
      if(prod(jp).lt.0.) print*,'prod <0',jp,prod(jp) 
      enddo 
C 
      prod(2) = (utau(2)/(kap*pdy(2)/2.))**2 
      prod(jpmax-1) = (utau(jpmax-1)/(kap*pdy(2)/2.))**2 
 
      RETURN 
      END 
C 
C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
C~~~~~~~~~~~ TURBULENT KINETIC ENERGY EQN SOLVER SUBROUTINE ~~~~~~~~~~ 
C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
      subroutine kinen(mx,jpmax,pdy,sigk,cmu,kin,utau,kap,tauwtl,tauwtu, 
     1 rho,amut,prod,eps,amu,u,y_cor,uplus,kpr,epr,amutpr,betav,nke, 
     1 v,alphd,ito) 
 
      INTEGER mx,jpmax,jp,nke,ito 
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      DOUBLE PRECISION pdy(jpmax),amut(jpmax),amup(jpmax),rho(jpmax) 
      DOUBLE PRECISION ask(jpmax),ank(jpmax),apk(jpmax),sp(jpmax) 
      DOUBLE PRECISION sc(jpmax),sigk,cmu,kap,pi,adrp,wk,alp,fs3,fnj2 
      DOUBLE PRECISION atk(mx,3),btk(mx),kin(jpmax),utau(jpmax) 
      DOUBLE PRECISION amutpr(jpmax),tauwtl,tauwtu 
      DOUBLE PRECISION prod(jpmax),eps(jpmax),amu(jpmax),fdr(jpmax) 
      DOUBLE PRECISION pno(jpmax),alphd(jpmax),betav(jpmax) 
      DOUBLE PRECISION uplus(jpmax),y_cor(jpmax),u(jpmax),v(jpmax) 
      DOUBLE PRECISION kpr(jpmax),epr(jpmax),amun(jpmax),amus(jpmax) 
 
      wk = 0.6 
      pi = 4.0*atan(1.0) 
       
      do jp=2,jpmax-1 
      if(ito.gt.500000) then 
      amun(jp) = amut(jp+1)/sigk 
      amus(jp) = amut(jp-1)/sigk 
      amup(jp) = amut(jp)/sigk 
      else 
      amun(jp) = amut(jp+1)/sigk+amu(jp+1) 
      amus(jp) = amut(jp-1)/sigk+amu(jp-1) 
      amup(jp) = amut(jp)/sigk+amu(jp) 
      endif 
      enddo 
 
C     Setting the center region coefficients for TKE 
      do 2 jp=3,jpmax-2 
      ank(jp)=2.0*(amup(jp)*amun(jp)/(amup(jp)+amun(jp))) 
     1 /(pdy(jp)) 
      ask(jp)=2.0*(amup(jp)*amus(jp)/(amup(jp)+amus(jp))) 
     1 /(pdy(jp)) 
      if(nke.eq.0) then 
      sp(jp) = rho(2)**2*cmu*kpr(jp)/amut(jp) 
      else 
      sp(jp) = rho(2)**2*cmu*kpr(jp)/amut(jp) 
      endif 
 
      if(sp(jp).lt.0.) print*,'sp-k',jp,sp(jp) 
      apk(jp)=(ank(jp)+ask(jp)+sp(jp)*pdy(jp))/wk 
      if(apk(jp).lt.0.) print*,'apk =',apk(jp) 
    2 continue 
      ask(2) = 0. 
      ank(2) = 2.0*(amup(2)*amun(2)/(amup(2)+amun(2))) 
     1 /(pdy(2)) 
      if(nke.eq.0) then 
      sp(2) = rho(2)*cmu**0.75*kpr(2)**0.5*uplus(2)/(pdy(2)/2.) 
      else 
      sp(2) = rho(2)*cmu**0.75*kpr(2)**0.5*uplus(2)/(pdy(2)/2.) 
      endif 
      apk(2) = (ask(2)+ank(2)+sp(2)*pdy(2))/wk 
       
      ask(jpmax-1) =2.0*(amup(jpmax-1)*amus(jpmax-1) 
     1 /(amup(jpmax-1)+amus(jpmax-1)))/(pdy(jpmax-1)) 
      ank(jpmax-1) = 0. 
      if(nke.eq.0) then 
      sp(jpmax-1) = rho(jpmax-1)*cmu**0.75*kpr(jpmax-1)**0.5 
     1 *uplus(jpmax-1)/(pdy(jpmax-1)/2.) 
      else 
      sp(jpmax-1) = rho(jpmax-1)*cmu**0.75*kpr(jpmax-1)**0.5 
     1 *uplus(jpmax-1)/(pdy(jpmax-1)/2.) 
      endif 
      apk(jpmax-1)=(ask(jpmax-1)+ank(jpmax-1)+sp(jpmax-1) 
     1 *pdy(jpmax-1))/wk 
 
C~~~~~TDMA~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
      do 31 jp=2,jpmax-1 
      k=jp-1 
      atk(k,1)=-ask(jp) 
      atk(k,2)=apk(jp) 
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      atk(k,3)=-ank(jp) 
      if(nke.eq.0) then 
      sc(jp) = amut(jp)*prod(jp) 
      else 
      sc(jp) = amut(jp)*prod(jp) 
     1 + betav(jp) 
     1 *(u(jp)-v(jp))**2 
     1 /((1-alphd(jp))) 
      endif 
      if(sc(jp).lt.0.) print*,'sc-k',jp,sc(jp) 
      btk(k)= sc(jp)*pdy(jp) 
     1 +apk(jp)*kpr(jp)*(1.-wk) 
      
   31 continue 
      if(nke.eq.0) then 
      btk(1)=tauwtl*u(2)/(pdy(2)/2.)*pdy(2) 
     1 +apk(2)*kpr(2)*(1.-wk) 
 
      else 
      btk(1)=tauwtl*u(2)/(pdy(2)/2.)*pdy(2) 
     1 *1./sqrt(1.-(1./(1.+utau(2)**3/(kap 
     1 *pdy(2)/2.*betav(2)/((1.-alphd(2))*rho(2))*(u(2)-v(2))**2)))) 
     1 + apk(2)*kpr(2)*(1.-wk) 
      endif 
 
      btk(jpmax-2)=btk(1) 
 
C     CALL TDMA 
      call thomas(jpmax-2,mx,atk,btk) 
      do 32 jp=2,jpmax-1 
      kin(jp)=btk(jp-1) 
   32 continue 
 
 
      RETURN 
      END 
 
 
C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
C~~~~~~~~~~~~~ TURBULENT DISSIPATION EQN SOLVER SUBROUTINE ~~~~~~~~~~~ 
C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
      subroutine diss(mx,jpmax,pdy,epr,kpr,eps,tauwtl,tauwtu,nke, 
     1  u,rho,amut,prod,kin,amu,y_cor,ce1,ce2,sige,cmu,kap,amutpr, 
     1 fdr,alphd,adrp,v,rer,cst,utau,uplus,betav,ito) 
 
      INTEGER mx,jpmax,jp,nke,ito 
      DOUBLE PRECISION y_cor(jpmax),pdy(jpmax),amut(jpmax),amup(jpmax) 
      DOUBLE PRECISION ase(jpmax),ane(jpmax),ape(jpmax),rho(jpmax) 
      DOUBLE PRECISION amutpr(jpmax),u(jpmax),sc(jpmax),sp(jpmax) 
      DOUBLE PRECISION a(mx,3),b(mx),kin(jpmax),fdr(jpmax),v(jpmax) 
      DOUBLE PRECISION prod(jpmax),eps(jpmax),amu(jpmax),alphd(jpmax) 
      DOUBLE PRECISION kpr(jpmax),epr(jpmax),rer(jpmax),ce3(jpmax) 
      DOUBLE PRECISION ce1,ce2,cmu,sige,kap,pi,adrp,alp,ce2pr(jpmax) 
      DOUBLE PRECISION tauwtl,tauwtu,amun(jpmax),amus(jpmax),cst(jpmax) 
      DOUBLE PRECISION utau(jpmax),uplus(jpmax),betav(jpmax),cep 
      REAL we 
      cep = 0.058 
      we = 0.6 
      pi = 4.0*atan(1.0) 
 
C     Setting the turbulent viscosity 
      do jp=2,jpmax-1 
      if(ito.gt.500000) then 
      amun(jp) = amut(jp+1)/sige 
      amus(jp) = amut(jp-1)/sige 
      amup(jp) = amut(jp)/sige 
      else 
      amun(jp) = amut(jp+1)/sige+amu(jp+1) 
      amus(jp) = amut(jp-1)/sige+amu(jp-1) 
      amup(jp) = amut(jp)/sige+amu(jp) 
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      endif 
      enddo 
 
C     Setting the coefficients for dissipation in the central domain 
      do 2 jp=3,jpmax-2 
      ane(jp)=2.0*(amup(jp)*amun(jp)/(amup(jp)+amun(jp))) 
     1 /(pdy(jp)) 
      ase(jp)=2.0*(amup(jp)*amus(jp)/(amup(jp)+amus(jp))) 
     1 /(pdy(jp)) 
      if(nke.eq.0) then 
      sp(jp) = dmax1((2.*rho(jp)**2*ce2*cmu*kin(jp)/amut(jp)),0.D0) 
      else 
      sp(jp) = dmax1((2.*rho(jp)**2*ce2*cmu*kin(jp)/amut(jp)),0.D0) 
      endif 
 
      if(sp(jp).lt.0.) print*, 'sp-e',jp,sp(jp) 
      ape(jp)=(ane(jp)+ase(jp)+sp(jp)*pdy(jp))/we 
      if(ape(jp).lt.0.) print*,'ape =',ape(jp) 
      ce2pr(jp)=0.362*cst(jp)**0.76+ce2 
      ce3(jp)=cep*rer(jp)**1.416*ce2pr(jp) 
    2 continue 
     
      ane(2) = 2.0*(amup(2)*amun(2)/(amup(2)+amun(2))) 
     1 /(pdy(2)) 
      ase(2) = 0. 
      if(nke.eq.0) then 
      sp(2) = 10**30 
      else 
      sp(2) = 10**30 
      endif 
      ape(2) = (ane(2)+ase(2)+sp(2))/we 
      ce2pr(2)=0.362*cst(2)**0.76+ce2 
      ce3(2)=cep*rer(2)**1.416*ce2pr(2) 
 
      ane(jpmax-1) = 0. 
      ase(jpmax-1) = 2.0*(amup(jpmax-1)*amus(jpmax-1) 
     1 /(amup(jpmax-1)+amus(jpmax-1)))/(pdy(jpmax-1)) 
      if(nke.eq.0) then 
      sp(jpmax-1) = 10**30 
      else 
      sp(jpmax-1) = 10**30 
      endif 
      ape(jpmax-1)=(ane(jpmax-1)+ase(jpmax-1)+sp(jpmax-1) 
     1 )/we 
      ce2pr(jpmax-1)=0.362*cst(jpmax-1)**0.76+ce2 
      ce3(jpmax-1)=cep*rer(jpmax-1)**1.416*ce2pr(jpmax-1) 
 
C~~~~~TDMA~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
      do 31 jp=2,jpmax-1 
      k=jp-1 
      a(k,1)=-ase(jp) 
      a(k,2)=ape(jp) 
      a(k,3)=-ane(jp) 
      if(nke.eq.0) then 
      sc(jp)=ce1*rho(jp)*prod(jp)*kin(jp)*cmu 
     1 +ce2*rho(jp)**3*cmu**2*kin(jp)**3/amut(jp)**2 
      else 
      sc(jp)=ce1*rho(jp)*prod(jp)*kin(jp)*cmu 
     1 + ce2pr(jp)*rho(jp)**3*cmu**2*kin(jp)**3/amut(jp)**2 
     1 + 6.*rho(jp)*ce3(jp)*alphd(jp)*(amu(jp)/rho(jp))**2 
     1 *(u(jp)**2 + v(jp)**2 - 2*u(jp)*v(jp)+ 2*kin(jp)) 
     1 *fdr(jp)/(pi*adrp**4*(1-alphd(jp))) 
      endif 
 
      if(sc(jp).lt.0.) print*,'sc-e', jp,sc(jp) 
      b(k)=sc(jp)*pdy(jp) 
     1 +ape(jp)*epr(jp)*(1.-we) 
   31 continue 
      if(nke.eq.0) then 
       b(1)=cmu**0.75*kin(2)**1.5/(kap*pdy(2)/2.)*10**30 

127 
 



www.manaraa.com

128 
 

     1 +ape(2)*epr(2)*(1.-we) 
      else 
      b(1)=cmu**0.75*kin(2)**1.5/(kap*pdy(2)/2.)*10**30 
     1 + betav(2)*(u(2)-v(2))**2/(rho(2)*(1-alphd(2)))*10**30 
     1 + ape(2)*epr(2)*(1.-we) 
      endif 
      b(jpmax-2)=b(1) 
 
C     CALL TDMA 
      call thomas(jpmax-2,mx,a,b) 
      do 32 jp=2,jpmax-1 
       eps(jp)=b(jp-1) 
   32 continue 
 
      RETURN 
      END 
 
C===== END TURB SUBROUTINE =========================================== 
 
C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
C~~~~~~~~~~~~~~~~~~ TDMA (Thomas) ALGORITHM ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
      subroutine thomas(n,max,a,b) 
 
      INTEGER max,n,i 
      DOUBLE PRECISION a(max,3),b(max) 
C     With reference to Patankar's book (pp. 52-53) 
C     a(i,2) = ai, a(i,3)=bi, a(i,1)=ci, b(i)=di (on RHS of eq below) 
C     a(1,3) = P1 
      a(1,3)=-a(1,3)/a(1,2) 
C     b(1) = Q1 
      b(1)=b(1)/a(1,2) 
      do 51 i=2,n 
C     a(i,3) = Pi 
      a(i,3)=-a(i,3)/(a(i,2)+a(i,1)*a(i-1,3)) 
C     b(i) = Qi 
      b(i)=(b(i)-a(i,1)*b(i-1))/(a(i,2)+a(i,1)*a(i-1,3)) 
   51 continue 
      do 52 i=n-1,1,-1 
      b(i)=a(i,3)*b(i+1)+b(i) 
   52 continue 
 
      return 
      end 


